
Conditioning Medicine
www.conditionmed.org

REVIEW ARTICLE | OPEN ACCESS

Loss of gonadal steroids as a negative conditioner for 
neurological disease
Fen Sun1,3, Anthony Oppong-Gyebi2,3, Derek A. Schreihofer2,3

The concept of hormesis in toxicology refers to a substance with a biphasic dose response in which a range of low doses is 
paradoxically beneficial to the organism, but higher doses are toxic. A similar concept exists in conditioning studies in which 
non-toxic exposure to a condition or factor affords protection from subsequent toxic exposure. For example, brief, mild 
ischemia can protect tissues from subsequent more severe or prolonged ischemia that would otherwise result in greater 
damage. Preconditioning is generally studied for positive benefits, whereas “negative conditioning” occurs when exposure 
to a factor or condition leads to detrimental effects greater than that caused by loss of the factor alone. Pleiotropic gonadal 
steroids display this negative conditioning effect in the vasculature, neurological disease, and cerebral ischemia. Indeed, 
gonadal steroids protect the central nervous system (CNS) during continuous physiological exposure, but this protection 
is loss with the decline in gonadal function such as occurs after menopause in women. Subsequent re-exposure to these 
hormones after a period of delay (i.e. 5-10 years in women) results not only in the loss of premenopausal benefit, but 
independent detrimental actions. The mechanisms underlying this negative conditioning are still not fully understood, but 
studies in animal models have begun to identify some of the key players leading to the detrimental effects of what would 
otherwise be considered beneficial hormones.
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Loss of gonadal steroids and neurological disease

In addition to their roles in reproduction, gonadal steroids 
(estrogens and progestins in females, and the androgens 
testosterone and dihydrotestosterone in males) have 
nonreproductive effects. These nonreproductive roles 
include trophic and neuroprotective effects in the brain and 
cerebrovasculature. These actions are primarily observed 
through increased disease susceptibility and severity after 
natural or artificial loss of these steroids and reinstatement of 
protection with pharmacological replacement. Menopause is 
the age-associated absence of menstruation for a 12-month 
period or more (World Health Organization, 1996). Menopause, 
either natural or due to the surgical removal of the ovaries, is 
characterized by a significant drop in circulating concentrations 
of female gonadal hormones (Nappi et al., 1999; Laughlin et 
al., 2000). Reduced estradiol (E2) concentrations indicative of 
menopause are associated with cognitive decline, Alzheimer’s 
disease (Bove et al., 2014), and an increased risk of stroke 
(Bushnell, 2008). The increased risk of stroke is also correlated 
with the age at menopause, with early menopause further 

increasing risk (Yang et al., 2017; Soleimani et al., 2018). These 
effects are not purely age-dependent, as surgical menopause 
in younger women similarly increases neurological disease 
risk (Bove et al., 2014). Animal models of stroke support the 
protective nature of the ovaries, as ovariectomized (OVX) 
young rats and mice experience greater injury than intact 
and E2-treated animals (Gibson et al., 2006; Koellhoffer and 
McCullough, 2013). Similarly, OVX rats experience greater 
damage after traumatic brain injury (TBI) than intact or E2-
treated rats (Bramlett and Dietrich, 2001). Cognitive deficits 
are apparent in some, but not all tasks in OVX rats (Su et al., 
2012), an effect that might be age dependent (Savonenko and 
Markowska, 2003).

Unlike females undergoing menopause, the decline in 
androgens in men is not precipitous. However, several studies 
do reveal correlations between testosterone (T) levels and 
neurological disease. For instance, lower endogenous T levels 
are associated with worse performance in cognitive tasks in 
older men (Moffat et al., 2002; Wolf and Kirschbaum, 2002). 
A literature review by Zarotsky et al., (2014) concluded that 
stroke and other vascular diseases were associated with low 
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T, but the cause was not assessed. Low T in older men is also 
associated with an increase in the risk of Alzheimer’s disease 
(Lv et al., 2016) and the incidence and severity of Parkinson’s 
disease in men (Okun et al., 2004). Studies in functionally 
gonadectomized men (as treatment for prostate cancer) also 
reveal detrimental effects from the loss of T that are not age-
dependent. Men on long-term, but not short-term, androgen 
deprivation therapy have memory deficits compared to healthy 
controls (Beer et al., 2006; Chao et al., 2012). Furthermore, 
a recent meta-analysis concluded that androgen deprivation 
therapy increased the risk of stroke (Poorthuis et al., 2017). In 
animal studies, gonadectomized male rodents exhibited deficits 
in cognitive function tasks such as object recognition, the radial 
arm maze (Frye and Seliga, 2001; Kritzer et al., 2001; Galea et 
al., 2008), and the Barnes maze (Locklear and Kritzer, 2014). 
However, short-term castration (1 week) actually improved 
stroke outcomes in young male rats (Cheng et al., 2009). 
The role of androgens in cognition is further underscored by 
the administration of androgen receptor antagonist flutamide 
in animal studies of learning and memory. When flutamide 
was injected into the hippocampus of male rats, they showed 
significant deficits in the water maze and active avoidance tasks 
(Edinger and Frye, 2007). 

Neuroprotective effects of gonadal steroids – Preclinical 
models
The neuroprotective role of gonadal steroids has been the 
subject of extensive study for several decades. These protective 
effects extend across numerous CNS injury models in rodents 
including cerebral ischemia (Engler-Chiurazzi et al., 2017), 
traumatic brain injury (Khaksari et al., 2018), spinal cord injury 
(Sengelaub and Xu, 2018), cognitive aging (Engler-Chiurazzi et 
al., 2017), Alzheimer’s disease (Lan et al., 2015), and multiple 
sclerosis (Kipp et al., 2012).

Activation of the classical estrogen receptor subtypes alpha 
(ERα) and beta (ERβ) and the membrane receptor G Protein-
coupled Estrogen Receptor 1 (GPER 1) have all been shown 
to play some roles in the neuroprotective effects of estrogen 
(Dubal et al., 2001; Merchenthaler et al., 2003; Cheng et 
al., 2009; Zhao et al., 2016; Wu et al., 2018). The numerous 
mechanisms proposed for the protective actions of E2 include 
those associated with preconditioning. These include inhibition 
of oxidative stress (Lagranha et al., 2018), maintenance of 
mitochondrial function (Arnold and Beyer, 2009; Simpkins et 
al., 2010), immunomodulation (Petrone et al., 2014), increased 
expression of growth factors such as brain-derived neurotrophic 
factor (BDNF) (Singh et al., 1995; Bimonte-Nelson et al., 2004; 
Cheng et al., 2016), insulin-like growth factor-1 (Sohrabji, 
2015), and nerve growth factors (Bimonte-Nelson et al., 2004), 
and actions on protective cell signaling pathways. Following 
global cerebral ischemia, E2-induced neuroprotection has 
been associated with increased activity of extracellular 
signal-regulated kinases (ERK 1/2) and Akt through GPER 1 
activation, as observed in the CA1 region of the hippocampus 
and cortical neurons in both in vitro and in vivo studies (Choi et 
al., 2004; Zhang et al., 2006; Jover-Mengual et al., 2007; Tang 
et al., 2014). Akt signaling also appears to mediate the effect 
of estrogen on the key regulator of oxidative stress responses, 
Nrf2 (Zhu et al., 2015) and antiapoptotic proteins such as Bcl-2 
(Honda et al., 2001; Yune et al., 2008).

Progesterone (P4), the other female principal sex hormone, 
and its metabolite allopregnanolone, have been shown to 
confer neuroprotection through both genomic and non-genomic 
mechanisms involving the progesterone receptor (PR)(Singh, 
2001; Kaur et al., 2007). Animal stroke models using females 
have demonstrated the ability of P4 to reduce infarct size post 
stroke (Yousuf et al., 2016; Andrabi et al., 2017), and genomic-
dependent increases in the expression of BDNF following P4 

administration have been shown to play an integral role in P4-
mediated neuroprotection (Singh et al., 1995; Gonzalez et 
al., 2004; Kaur et al., 2007). Like E2, P4 can protect neurons 
through activation of the phosphoinositide 3-kinase (PI3K)-
Akt and mitogen-activated protein kinase (MAPK) pathways 
(Kaur et al., 2007). A non-classical progesterone receptor, 
progesterone receptor membrane component-1 (Pgrmc-1) 
has also been found to mediate the release of BDNF for 
neuroprotection (Kaur et al., 2007). When administered either 
before or after induced ischemic brain injury in animal studies, 
P4 holds high therapeutic potential against ischemic stroke 
even though its post-treatment effects are limited by a narrow 
therapeutic-time window (Jiang et al., 1996; Kumon et al., 
2000; Morali et al., 2005; Wali et al., 2014). Preclinical studies 
also revealed the neuroprotective effects of P4 in TBI and 
spinal cord injury (SCI) (Brotfain et al., 2016), and amyloid 
beta toxicity in rats leading to improved cognitive function (Hu 
et al., 2016).

The testicular androgens T and dihydrotesterone (DHT) 
also show promise as neuroprotective agents in preclinical 
studies. T improves outcomes in stroke models (Pan et al., 
2005; Fanaei et al., 2014), although there is evidence that this is 
an age-dependent effect (Cheng et al., 2009). T also improves 
cognition in Alzheimer’s disease models in both rats (Huo et 
al., 2016) and mice (Rosario et al., 2010). DHT is beneficial 
in rats experiencing SCI (Byers et al., 2012; Sengelaub et al., 
2018) and in a model of chronic experimental autoimmune 
encephalomyelitis (Giatti et al., 2015). Other studies support 
beneficial effects of T on cognition (Frye and Seliga, 2001; 
Kritzer et al., 2001; Schneider-Rivas et al., 2007; Galea et al., 
2008; Spritzer et al., 2011; Locklear and Kritzer, 2014; Pintana 
et al., 2015).

In addition to effects on neurons, all three gonadal steroids 
can promote stem growth and differentiation in the injured 
brain. E2 (Li et al., 2011) and T (Fanaei et al., 2014) both 
promote neurogenesis in the subventricular zone following 
experimental stroke, but the role of P4 remains unresolved 
(Lee et al., 2015; Jiang et al., 2016). E2 also enhances 
neurogenesis after SCI (Chen et al., 2010) and in mouse models 
of Alzheimer’s disease (Zheng et al., 2017). Interestingly, 
P4 enhances basal neurogenesis in the hippocampus, but 
suppresses neurogenesis after TBI (Barha et al., 2011). Gonadal 
steroids have also been shown to promote oligodendrocyte 
differentiation and remyelination in the brain (Hussain et al., 
2013; Luo et al., 2016), spinal cord (Labombarda et al., 2009), 
and the peripheral nervous system (Chen et al., 2016). These 
beneficial effects on neural and oligodendrocyte precursors 
likely play a role in the chronic phases of injury and repair.

Neuroprotective effects of gonadal steroids – Clinical 
uncertainty
Despi te  the  evidence  for  gonadal  s tero id  media ted 
neuroprotection in preclinical models, results in human 
populations are much less clear. Epidemiological studies of 
several neurological diseases including stroke (Girijala et 
al., 2017), Alzheimer’s disease (Ferretti et al., 2018), and 
Parkinson’s disease (Georgiev et al., 2017), demonstrate gender 
differences that diminish following menopause, suggesting 
the benefits of female gonadal steroids. However, many recent 
interventional clinical studies have failed to recapitulate 
preclinical success. For example, a large Phase 3 clinical trial 
for P4 in TBI failed to show any benefit (Skolnick et al., 2014). 
However, some smaller studies have demonstrated benefits 
of gonadal steroids. In older men, T increased cognitive 
performance and men with lower T exhibited a decline in 
cognitive function (Janowsky et al., 2000). T showed very 
little benefit to men with Parkinson’s disease (Okun et al., 
2006), although spatial benefits have been observed in men 
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with Alzheimer’s disease (Cherrier et al., 2005). A study by the 
same group found minimal benefits in a larger cohort of men 
with mild cognitive impairment (Cherrier et al., 2015). Despite 
evidence that endogenous T levels <10% of normal value are 
associated with stroke risk in men, a large prospective cohort 
study did not find other relations between T or E2 and stroke 
(Holmegard et al., 2016).

The concept of a beneficial role of E2 in the brain was 
dramatically challenged by the results of the Women’s 
Health Initiative (WHI), the largest ever prospective study of 
postmenopausal hormone therapy (HT). The study included 
both interventional and observational arms, as well as treatment 
with oral conjugated equine estrogens (CEE) alone (in women 
without a uterus) or CEE + medroxyprogesterone acetate (MPA). 
The first results from over 16,000 postmenopausal women were 
published in 2002, approximately 5 years into the proposed 8.5-
year study as it was stopped due to an increased rate of breast 
cancer (Rossouw et al., 2002). Numerous subsequent findings 
showed detrimental effects of HT on the brain. The ancillary 
WHI Memory Study (WHIMS) found that both CEE and 
CEE+MPA increased the risk of dementia, primarily Alzheimer’s 
disease (Shumaker et al., 2003; Shumaker et al., 2004). The 
WHIMS MRI study also revealed increased brain atrophy in 
those on HT (Resnick et al., 2009). Furthermore, both CEE and 
CEE+MPA increased the risk of stroke (Wassertheil-Smoller 
et al., 2014). When the observational and interventional arms 
of the WHI were combined, the risk of stroke was similarly 
increased with HT (Prentice et al., 2009). Results from the 
Nurse’s Health Study also found an increased risk of stroke 
with HT (Grodstein et al., 2008), and subarachnoid hemorrhage 
risk was slightly increased by HT in the WHI (Qureshi et al., 
2016). The more concerning observation is that even 3 years 
after stopping HT, cognitive deficits persisted (Prentice et al., 
2009).

Critiques of the WHI began almost immediately after the 
initial publications and identified numerous potential reasons 
for increases in stroke and dementia and other unexpected 
findings, but focused primarily on the average age of 
participants (63 years old), time since menopause (>10 years), 
hormone formulation (CEE instead of E2 and MPA instead 
of P4), the use of constant instead of cyclical MPA, and the 
route of administration (oral instead of transdermal) (Klaiber 
et al., 2005; Lacey, 2014). Singh et al. (2008) addressed 
these issues and their relations to preclinical studies, pointing 
out significant differences from the experimental designs 
demonstrating beneficial effects in the laboratory (Singh et 
al., 2008). Some of these issues, they argued, could have 
predicted the results of the WHI because preclinical models 
had already demonstrated differential neuroprotective effects 
in rodents that were dependent on age, steroid formulation, and 
route of administration (Singh et al., 2008). Importantly, the 
WHI study design did not optimize any of these parameters 
to enhance the likelihood of positive outcomes (Singh et al., 
2008). Subsequent reanalysis and additional interventional 
studies sought to address these methodological issues and found 
either benefits or no detrimental effects on cardiovascular and 
cognitive risk (McCarrey and Resnick, 2015). The “critical 
window” hypothesis was examined in the WHI Memory Study–
Young (WHIMS-Y) that reexamined women from WHIMS 
who had begun the trial between the ages of 50 and 55 with 
CEE only (Espeland et al., 2013). Unlike the WHIMS study, 
women in WHIMS-Y showed no increase in dementia over 14 
years, but also no evidence of benefit (Espeland et al., 2013). 
The study did not address the role of MPA. The Kronos Early 
Estrogen Prevention Study (KEEPS) used CEE or transdermal 
E2 with oral P4 for 14 days each month in women within a year 
of menopause and the KEEPS-Cog arm examined numerous 
cognitive and affective outcomes over 4 years (Gleason et 

al., 2015). Like the WHIMS-Y study, no risk or benefit was 
observed for cognition (Gleason et al., 2015). Other smaller 
clinical studies of HT following surgical menopause showed 
mixed effects (McCarrey and Resnick, 2015).

In men, the role of T replacement in brain health is unclear, 
although detrimental effects such as those seen in the WHI 
have not been reported. Although some small studies show that 
T increases cognitive performance (Janowsky et al., 2000), 
other human studies did not show any relationship between 
maintaining normal T levels and cognitive function (Yonker et 
al., 2006; Martin et al., 2007). A small study of T intervention 
in Alzheimer’s disease did not find cognitive benefits (Lu 
et al., 2006). Similarly, a series of recent clinical trials, the 
“Testosterone Trials,” failed to find any cognitive benefit in a 
population of older hypogonadal men treated for 12 months 
with T gel whether they began the trial with impaired cognition 
or not (Resnick et al., 2017). These studies confirmed the 
results of the Testosterone Effects on Atherosclerosis in Aging 
Men (TEAAM) study which failed to show cognitive benefits 
with T treatment of 36 months in older hypogonadal and normal 
gonadal men (Huang et al., 2016). Although non-randomized 
studies show a lower risk of stroke, a recent meta-analysis of 8 
randomized-controlled trials concluded that T therapy has no 
significant effect on stroke (Elliott et al., 2017). Specific studies 
examining long-term T deprivation and replacement in men 
have not been performed.

Window of Opportunity for Gonadal Steroids
Several studies using animal models support the concept of a 
“critical window of opportunity” for the benefits of gonadal 
hormone replacement in the brain. The most notable ones are 
those designed specifically to test this hypothesis following 
the WHI. In 2007, Suzuki et al., (2007) demonstrated 
that the neuroprotective effects of E2 on ischemic stroke 
could be abolished in mice by delaying HT 10 weeks or 
longer after OVX. The delayed HT also prevented the anti-
inflammatory effect of E2 (Suzuki et al., 2007). A similar loss 
of neuroprotection after long-term E2 deprivation (LTED) 
was demonstrated by multiple groups in rats undergoing 
experimental focal cerebral ischemia (Selvamani and Sohrabji, 
2010), global cerebral ischemia (Zhang et al., 2011; Wu et al., 
2018), hippocampal amyloidogenesis (Zhang et al., 2013), 
and tests of cognition (Daniel et al., 2006). In aged mice with 
long-term low endogenous E2 levels, there is also a loss of 
E2 neuroprotection against focal cerebral ischemia (Cai et al., 
2014), and the beneficial effects of E2 on hippocampal synaptic 
efficacy are lost after LTED (Bohacek and Daniel, 2009; Smith 
et al., 2010). Interestingly, acute centrally administered E2 
still appears to maintain neuroprotective benefits under these 
conditions (Inagaki et al., 2012). No specific studies of P4 
neuroprotection after long-term OVX have been published. 
However, 5-6 weeks, but not 1 week, of gonadal steroid 
deprivation through ovariectomy significantly reduces the 
ability of acute administration of E2 and P4 to induce sexual 
behavior in female rats, suggesting that the brain sensitivity 
to P4 is also diminished by the length of ovarian steroid 
deprivation (Clark et al., 1981)

Because men do not have a clear loss of T akin to 
menopausal estrogen loss in women, studies of long-term T 
deprivation and replacement in men are lacking. In preclinical 
studies, administration of T 1-week post-stroke can enhance 
functional recovery in young male rats (Pan et al., 2005). 
However, castration is protective to young male rats undergoing 
focal cerebral ischemia and T replacement reverses this benefit 
(Cheng et al., 2009). Studies using DHT support the concept 
that the detrimental effect of T is not due to conversion to 
E2 (Cheng et al., 2007; Uchida et al., 2009). Unlike young 
male rats, T replacement protects aged male rats with low T 
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levels from stroke injury (Cheng et al., 2009). Another study 
demonstrated beneficial effects of T treatment on long-term 
memory in young, but not aged Wistar rats (Schneider-Rivas et 
al., 2007), and Pintana et al. (2015) showed that T replacement 
for 4 weeks improved water maze performance in rats 12 
weeks after castration (Pintana et al., 2015). These few studies 
suggest that T replacement may be beneficial after long-term 
gonadectomy (GDX). Besides the loss of benefit after LTED, 
there is evidence that HT can be detrimental when it is delayed 
too long. Results of the WHI may be the most alarming clinical 
study to demonstrate these negative effects. Despite the many 
potential confounds associated with the WHI, older women 
not only “lost” the benefits of ovarian hormones, but also 
increased their risks of several diseases including stroke and 
dementia (see above). A few studies in rodents further support 
the negative effects of E2 after LTED. For example, OVX of 
reproductively senescent rats with low circulating gonadal 
hormones not only prevents the neuroprotective effects of E2 
treatment on stroke injury, but exacerbates the injury (Selvamani 
and Sohrabji, 2010). Similarly, E2-induced inhibition of several 
cytokines and chemokines after stroke is reversed by LTED and 
the levels of monocyte chemoattractant protein-1 are actually 
increased by E2 treatment (Suzuki et al., 2007). Importantly, 
with respect to a postmenopausal population, gonadal hormones 
appear to exacerbate the deleterious effects of comorbid 
conditions both within and outside the CNS. For example, E2 
treatment exacerbates ischemic injury in diabetic rats (Santizo 
et al., 2002), and high dose E2 can increase stroke injury in a 
permanent occlusion model even without LTED (Bingham et 
al., 2005). E2 and oral contraceptives both worsen hippocampal 
injury after global cerebral ischemia in nicotine exposed rats 
(Raval et al., 2011), and long-term E2 replacement exacerbates 
the inflammatory effects on cognitive tasks in female rats 
(Marriott et al., 2002). Outside the CNS, E2 exacerbates injury 
in the heart following myocardial infarction (de Almeida et al., 
2018), and HT in older women and mice with low endogenous 
hormone levels enhanced hearing loss, an effect that was greater 
for E2 + P4 than for E2 alone (Price et al., 2009).

Dual beneficial and detrimental effects of gonadal 
steroids also appear to be dependent on timing. E2 treatment 
of OVX female mice prior to methamphetamine protects 
nigrostriatal dopamine neurons from dopamine depletion (Liu 
and Dluzen, 2006). In contrast, E2 treatment after an initial 
methamphetamine dose exacerbates dopamine cell loss (Liu 
and Dluzen, 2006). Similarly, in mouse primary cortical brain 
cultures, pretreatment with E2 protects neurons from NMDA-
mediated toxicity, while E2 treatment starting 10 minutes after 
NMDA increased cell death (Spampinato et al., 2012). In vitro 
T has similar effects. Pretreatment of a dopaminergic cell line 
with T protects cells from oxidative stress, while T treatment 
after the oxidative stress increases cell death and enhances 
cellular oxidative and inflammatory responses (Holmes et 
al., 2016). These results further support the notion that the 
beneficial effects of gonadal steroids are dependent on their 
presence prior to homeostatic insults or injuries. Treatment 
following injury may not only be ineffective, but also has the 
potential to be detrimental. Some of the mechanisms underlying 
these shifts in action are reviewed by others, but likely involve 
numerous epigenetic changes and modulation of steroid 
receptor expression (Liu and Yang, 2013; Daniel et al., 2015).

Whether the detrimental effects of gonadal steroids result 
from preexisting disease, timing, formulation, or age, is still 
under investigation. The loss of receptor expression (and its 
persistence due to epigenetics) can explain the loss of the 
benefits of steroids, but is less able to explain detrimental 
actions. A possible explanation comes from cardiovascular 
studies in which the loss of gonadal hormones allows 
detrimental processes to progress. This progression may 

reveal detrimental effects of otherwise beneficial steroids. For 
example, a loss of gonadal hormones can lead to changes in 
circulating lipids that enhance atherosclerosis (Oliver-Williams 
et al., 2018). When combined with the thrombotic effect of 
estrogen, detrimental cerebrovascular events may be increased 
leading to cognitive decline, stroke risk, and enhanced 
inflammation. Thus, like aging, underlying conditions may alter 
the effects of the steroid. 

Gonadal steroids and mechanisms of conditioning
Gonadal steroids beneficially influence several pathways 
associated with the effects of preconditioning. The loss of 
hormone action on these pathways could represent a loss of 
preconditioning. Ischemic preconditioning (IPC) for stroke 
injury has been recognized since the 1990’s. Brief sublethal 
ischemia induces tolerance of the brain and reduces neuronal 
death in response to a subsequent lethal ischemic insult in 
stroke models (Kitagawa et al., 1990; Kirino et al., 1991; Liu et 
al., 1992). Evidence also suggests that prior transient ischemic 
attacks in human patients acts to precondition the brain and 
results in better outcomes from subsequent ischemic stroke 
(Weih et al., 1999; Moncayo et al., 2000), consistent with 
animal studies. Besides IPC, other forms of preconditioning 
have been applied to many neurological diseases. For example, 
some animal studies have reported that preconditioning, with 
hyperbaric oxygen or N-methyl-D-aspartate protects against 
TBI (Hu et al., 2008; Costa et al., 2010; Hu et al., 2010). Other 
studies have shown that multiple preconditioning scenarios 
exert neuroprotective effects against amyloid beta toxicity in 
vitro (Mitchell et al., 2009; Zhang et al., 2018), a mouse model 
of Alzheimer’s disease (Tang et al., 2011), as well as in vitro and 
in vivo models of Parkinson’s disease (Cannon et al., 2005; El 
Ayadi and Zigmond, 2011). As reviewed by Stetler et al., (2014) 
a large number of interventions can act as preconditioning 
stimuli including ischemia, oxygen (hypoxic and hyperbaric 
conditions), temperature (hypothermia and hyperthermia), 
anesthetics/analgesics, ethanol, stimulants, neurotoxins, 
neuroinflammatory agents, systemic stress (physical exercise 
and caloric restriction), and subcellular stress (mitochondrial) 
(Stetler et al., 2014). Stetler et al., (2014) recognized two types 
of preconditioning, a rapid effect lasting a few hours and a 
delayed effect that begins as early as 24 hours that may last up 
to 7 days. The rapid effects involve modification of signaling or 
enzyme activity, whereas the delayed effects involve changes in 
gene transcription and de novo protein synthesis (Stetler et al., 
2014). 

Among the major pathways implicated in preconditioning 
are oxidative stress, enhancement of the antioxidant defense 
pathway, enhancement of anti-inflammatory pathways, and 
modification of signaling and transcriptional pathways. E2 has 
been widely reported to reduce oxidative stress by attenuating 
the production of reactive oxygen species (ROS) and increasing 
anti-oxidant activity (Stirone et al., 2005; Razmara et al., 2008; 
Guo et al., 2010; Kemper et al., 2013). OVX rats treated with P4 
showed improved bioenergetic efficiency and balance, as well 
as attenuated oxidative stress in brain mitochondria (Irwin et al., 
2008). Further, P4 promotes higher mitochondrial respiration 
and lower oxidative stress after stroke and TBI (Robertson and 
Saraswati, 2015; Gaignard et al., 2018). A recent clinical study 
has shown that diabetic men with lower T levels have increased 
mitochondrial ROS and reduced mitochondrial membrane 
potential and superoxide dismutase (SOD) expression (Rovira-
Llopis et al., 2017). 

It is well known that female sex hormones modulate 
inflammatory processes in the brain. E2 treatment is reported to 
attenuate the inflammatory response to ischemic stroke (Santizo 
et al., 2000), interleukin-1 beta (IL-1β) (Ospina et al., 2004), 
and lipopolysaccharide (LPS) (Sunday et al., 2006) in female 
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OVX rats. The anti-inflammatory effect of E2 is mediated in 
part via nuclear factor-κB (NFκB) (Galea et al., 2002; Ospina 
et al., 2004), decreased levels of cyclooxygenase-2 (COX-
2) and inducible nitric oxide synthase (iNOS) proteins, and
attenuated production of prostaglandin E2 (PGE2) and nitric
oxide (NO) (Ospina et al., 2004; Sunday et al., 2006; Sunday
et al., 2007). Furthermore, this anti-inflammatory effect of E2
is reported to be age-related: E2 significantly suppressed LPS
induced iNOS and COX-2 proteins, and production of NO
and PGE2 only in young female OVX rats, not in middle-aged
ones (Sunday et al., 2007). Additionally, Sohrabji (2005) also
suggested that the effect on inflammation is dependent on the
reproductive age of the individual receiving E2 replacement. E2
replacement is beneficial when given to young OVX females,
while E2 replacement is deleterious to older reproductively
senescent animals in a prolonged E2-deficient state (Sohrabji,
2005). There are contradictory reports regarding the effects of
P4 on inflammation in the brain. Sunday et al., (2006) found

that P4 given to female OVX rats not only exacerbated the 
inflammatory response to LPS, but also diminished the anti-
inflammatory effect of E2 when E2 and P4 were given as a 
combined treatment (Sunday et al., 2006). However, in another 
study, P4 was reported to reduce brain infarct volume and 
improve functional outcome in ischemic models, and these 
neuroprotective effects were associated with a suppression of 
the inflammatory response to ischemia (Gibson et al., 2005). 
The effects of androgens on brain inflammation differ under 
physiological and pathological conditions. In the absence of 
LPS stimulus, GDX with or without T replacement doesn’t 
affect cerebrovascular inflammation, i.e. COX-2 or iNOS, in 
male rats (Razmara et al., 2005). However, GDX rats with T 
replacement increased LPS-induced inflammatory markers in 
the brain, compared to GDX or intact male groups (Razmara 
et al., 2005). DHT treatment is pro-inflammatory via androgen 
receptor (AR)-dependent mechanisms under the physiological 
condition while anti-inflammatory by conversion of DHT to 
3β-diol and activation of ERβ under pathological condition 
(Gonzales et al., 2009; Zuloaga and Gonzales, 2011; Zuloaga et 
al., 2012a; Zuloaga et al., 2012b).

E2 and P4 have been reported to activate the PI3K-Akt 
signaling pathway in explant cortical neurons, which is 
associated with neuroprotective action (Singh, 2001; Kaur et 
al., 2007). The expression of the cell survival/anti-apoptotic 
factor Bcl-2 decreases in the cerebrovascular in the middle-
aged female OVX rats, while E2 replacement reverses this 
effect (Jesmin et al., 2003). Additionally, E2 exerted its 
neuroprotection by preventing the downregulation of Bcl-
2 via ERβ in cerebral ischemia and glutamate induced injury 
(Dubal et al., 1999; Alkayed et al., 2001; Zhao et al., 2004). 
Moreover, E2 also inhibits the expression of the BAD gene, 
which is the antagonist of the Bcl-2 gene (Dubal et al., 1999; 
Alkayed et al., 2001; Zhao et al., 2004). DHT is reported to 
inhibit glial cell apoptosis by regulating Bcl-2 protein through 
activation of the PI3K-Akt signaling pathway (Yao et al., 
2016). While preconditioning induced by isoflurane in males 
is reported to enhance Akt activation (Dudek et al., 1997; 
Brunet et al., 2001), it doesn’t alter Akt activation in females 
(Kitano et al., 2007). Research in other organs like the heart 
also supported the enhancement of Akt signaling by T treatment 
(Bai et al., 2005). It has also been suggested that isoflurane 
preconditioning induced neuroprotection in experimental stroke 
is male specific through an AR-dependent mechanism on Akt 
activation (Zhu et al., 2010). The gender differences in the 
response to isoflurane preconditioning in ischemic cortex may 
be mediated through the basal expression of neuronal inducible 
cell-death putative kinase (NIPK), a negative modulator of Akt 
activation (Kitano et al., 2007). Recently, NIPK was identified 
as an estrogen-responsive gene by microarray analysis (Terasaka 
et al., 2004; Ise et al., 2005), suggesting that the presence or 
absence of E2 could alter NIPK levels, leading to alterations 
in cortical Akt activation in the isoflurane preconditioned 
brain. Other in vitro studies have implicated a rapid protective 
preconditioning effect of E2 on hippocampal pyramidal neurons 
against oxygen-glucose deprivation 48 hours after a brief E2 
exposure, mediated by calcium-calmodulin dependent protein 
kinase II (CAMKII) and mitogen-activated protein kinase 
(MAPK42/44) (Raval et al., 2006). Figure 1 depicts pathways 
shared by ischemic preconditioning and steroid hormones 
(particularly E2) in the brain. Although several other pathways 
and signaling mechanisms for both IPC and steroid actions in 
the brain have been examined, the overlap of these pathways in 
neuroprotection has not been fully elucidated.

Hormetic and negative conditioning model for the 
detrimental effects of gonadal steroids
The loss of the protective effects of gonadal hormones we 

Figure 1: Common pathways for ischemic preconditioning (IPC) and 
steroid neuroprotection by pretreatment in the brain. Both IPC and 
steroids activate the phosphatidylinositol 3-kinase (PI3K) signaling 
pathway to increase protein kinase B (Akt) activation. Among the 
targets for Akt is the proapoptotic mediator BAD and glycogen 
synthase kinase 3 beta (GSK3β), which Akt inhibits. This inhibition 
relieves the inhibitory effect of GSK3β on nuclear factor-like 2 (Nrf2), 
allowing Nrf2 to translocate to the nucleus where it binds antioxidant 
response elements (ARE) in the promoter of several antioxidant 
genes, including glutathione S-transferase (GSH), heme oxygenase-1 
(HO-1), and superoxide dismutase (SOD). Both IPC and steroids 
activate protein kinase C epsilon (PKCξ) leading to phosphorylation of 
the mitogen activated protein kinases ERK1 and ERK2. These kinases 
enhance the activity of the mitochondrial ATP sensitive potassium 
channels (Mito K+ ATP). Activation of these channels maintains 
mitochondrial potential and prevents calcium overload and 
mitochondrial swelling. Signaling through growth factor receptors 
(receptor tyrosine kinases, RTK) occurs both in IPC and steroid 
treatment. Steroid actions are two-fold, both increasing transcription 
of growth factors, such as insulin-like growth factor (IGF-1) and brain-
derived neurotropic factor (BDNF) that activate these receptors, 
and also activation of the SRC protooncogene directly. This leads 
to an increase in signaling through the janus kinases (JAKs)/signal 
transducer and activator of transcription 3 (STAT3) proteins. Among 
beneficial genes targeted by STAT3 are the antiapoptotic factors Bcl2 
and BclXL and cellular inhibitor of apoptosis 1 protein (cIAP).
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have described have been explained as a “critical window” for 
benefit. However, the physiological changes that accompany 
hormone depletion may also lead to toxic effects of the same 
hormones. This suggests a more complex relationship than a 
simple loss of action. These effects may be better described by 
the concept of hormesis, in which a same substance shows a 
biphasic response that is dose dependent (Figure 2A). However, 
this phenomenon can also be described as a therapeutic window 
for a beneficial response (Kendig et al., 2010). By adding 
the timing of the treatment to dose it could be applied to HT. 
Indeed, hormetic responses are often described as “U” or “J” 
shaped curves (Figure 2A). Such non-monotonic dose responses 
are well recognized in endocrine and other systems (Lagarde et 
al., 2015), and detrimental effects of high dose of estrogen have 
been reported on the heart, kidneys, and liver in young mice 
even with short term OVX (Meng et al., 2011).

A recent systematic review of cardiovascular and stroke 
risk concluded that higher doses and older age at initiation of 
HT significantly increases the risk of thromboembolism and 
stroke (Oliver-Williams et al., 2018). Cardiovascular disease 
increases with age, and clinical evidence suggests that higher 
E2 levels are associated with more vulnerable arterial plaques 
(Glisic et al., 2018). A new meta-analysis also revealed that the 
use of oral contraceptives increases the risk of subarachnoid 
hemorrhage and this risk increases with dose (Xu et al., 2018). 
In vitro and in vivo, Ma et al., (2013) demonstrated beneficial 
effects of E2 at physiological doses, but detrimental effects 
at supraphysiological doses in rats subjected to experimental 
stroke, again supporting a role for dose in the biphasic effect of 
E2 (Ma et al., 2013). Similar detrimental effects of high dose 
ethinyl E2 are observed for cognitive function in rats whereas 
low dose contraceptive levels have no effects but higher levels 
are detrimental (Mennenga et al., 2015). Low dose E2 also 
enhances long-term potentiation in the hippocampus of juvenile 
male rats, but high dose has the opposite effect (Tanaka and 
Sokabe, 2013). However, this dose effect may not hold for 

induced stroke in rats, at least not in the short term (Ingberg et 
al., 2016). Similar to E2, P4 neuroprotection against stroke is 
dose dependent, where the protective effects of low doses are 
reversed at supraphysiological concentrations (Yousuf et al., 
2014) (Strom et al., 2009).

Strom et al., (2011) reviewed the hormetic nature of estrogens 
and progestins noting that despite evidence for inflammation 
in mediating the hormetic effects of female sex steroids in the 
brain and cardiovascular system, studies are far from conclusive 
(Strom et al., 2011). Nevertheless, hormetic effects of gonadal 
steroids have been demonstrated in a number of physiological 
systems (Strom et al., 2011). Calabrese et al., (2014) placed 
antioxidant pathways, including hemeoxygenase-1, in the 
factors underlying hormetic responses to sex hormones 
(Calabrese et al., 2014), and ROS are clearly sensitive to 
gonadal steroids. These hormetic concepts support the idea that 
long term hormone deprivation (LTHD) leads to potential shifts 
in the hormetic curve resulting in reduced benefit and enhanced 
adverse effects. If the optimal dose of HT lies near the peak of 
the hormetic benefit and within the physiological range (Figure 
2A), only supraphysiological concentrations would likely cause 
harm. In contrast, LTHD could shift the hormetic curve up, 
not only reducing the range of benefits, but also decreasing 
the safe range of the treatment (Figure 2B). This shift may 
greatly reduce the range of concentrations at which benefits are 
observed or reduce the magnitude of the benefits, resulting in 
no observable effects. A third possibility is that LTHD shifts 
the hormetic curve left (Figure 2C). Under these conditions, 
what would be considered an otherwise optimal dose would 
now have no effect or be potentially detrimental. If LTHD both 
shifted the hormetic curve left and up, it is likely that only the 
detrimental effects would be observed at what would otherwise 
be considered therapeutic doses (Figure 2D). 

Such shifts would be fully consistent with observations 
detailed above. First, there are dose dependent positive and 
negative effects of gonadal steroids in the brain. Second, 
supraphysiological doses can be detrimental in young 
individuals, but lower doses can be detrimental in older 
individuals or those with natural or surgical hypogonadism. 
Third, the negative effects are exacerbated by preexisting 
conditions that enhance ROS or inflammation. Although not 
widely examined, there are a few examples of very low dose 
benefits as would be expected in models C and D. Compared 
to standard HT, which increases thrombotic potential, ultra-low 
dose E2 has positive effects on hemostasis in postmenopausal 
women (Pirog et al., 2017).

The mechanisms underlying the shift in dose response with 
LTHD are not fully elucidated, and many studies correlate 
reduction in beneficial factors with a loss of hormonal benefit 
rather than a shift to detriment. However, no specific studies 
have examined the shift in dose response for neurological 
dysfunction. Importantly, studies showing reduced steroid 
hormone receptor expression [i.e. (Zhang et al., 2011)] do not 
conclude whether such changes are the result of permanent 
epigenetic changes that prevent a reinstatement of benefits, 
although estrogen and progesterone receptors clearly undergo 
epigenetic changes with age (Nugent et al., 2011; Westberry 
et al., 2011; Wilson et al., 2011). Whether such changes are 
permanent is also unknown, although at least one study showed 
that cognitive deficits that accompanied HT persisted at least 
three years after cessation of treatment (Prentice et al., 2009).

Conclusion
Menopause and other conditions that lead to hypogonadism in 
women and men are often treated with hormone therapy (HT), 
but both clinical and preclinical studies suggest that the benefits 
derived from these hormones is time and dose dependent. 
Importantly, under some conditions, such as preexisting 

Figure 2: Shifts in the steroid hormone hormetic curve may lead to 
detrimental effects. A: “J” shaped hormetic curve for adverse effects. 
The physiological range of the hormone overlaps the beneficial 
hormetic dose range and results in a reduction in adverse effects 
that is maximized at an optimal dose falling at the peak of the curve.  
B: An upward shift in the hormetic curve reduces the hormetic range 
such that benefits are small and small deviations from the optimal 
dose lead to the enhancement of adverse effects. C: A leftward shift 
in the hormetic curve results in the optimal physiological dose falling 
in the range of enhanced adverse effects. D: A leftward and upward 
shift of the hormetic curve results in both a reduction of benefit 
and an enhancement of adverse effects even far below the optimal 
physiological dose.
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cardiovascular disease, HT can have detrimental effects on the 
brain and other organ systems. Although conclusive evidence 
is lacking, the shift from beneficial to detrimental fits with a 
model of hormesis in which LTHD shifts the hormetic curve to 
minimize the benefits of gonadal steroids and reveal detrimental 
effects at otherwise beneficial doses.
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