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SAFE pathway and conditioning: from discovery to its 
effectiveness in the presence of cardiovascular risk factors
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Although ischemic conditioning has been described as the most powerful strategy to protect against ischemia-reperfusion 
injury, its translation to the clinical setting has proved to be challenging, possibly due, at least in part, to the presence 
of different cardiovascular risk factors in patients, which are known to affect its efficacy. Ischemic conditioning confers 
cardioprotection via the activation of multiple prosurvival pathways, including the activation of the survivor activating factor 
enhancement (SAFE) path, which involves mediators of the innate immune system (i.e. tumor necrosis factor alpha) and key 
transcription factors such as the signal transducer and activator of transcription 3 (STAT3). Here, we describe the origin of the 
SAFE path as a key pathway in ischemic conditioning and we explore how the activation of this path may be affected in the 
presence of different cardiovascular risk factors.
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The discovery of intrinsic cardioprotective signaling 
pathways in conditioning 
Since its discovery in 1986, the phenomenon of ischemic 
conditioning has been the focus of intense research with more 
than 20,000 peer-reviewed publications (listed in PubMed) 
trying to understand this phenomenon and to translate it to 
the clinical arena (Cour and Lecour, 2019; Hausenloy et al., 
2019). Unfortunately, as simple as ischemic conditioning may 
be applied (few episodes of ischemia/reperfusion prior to or 
after a sustained ischemic insult), these 34 years of research 
conducted worldwide have not been able to fully elucidate 
the mechanisms involved in this protective phenomenon, 
even though some important discoveries have been made 
over that time. In the 1990s, adenosine and protein kinase C 
were suggested as key components of the signaling cascade, 
their activation leading to the downstream activation of an 
unknown effector for cardioprotection (see Goto et al., 1996). 
The putative mitochondrial potassium adenosine triphosphate 
dependent channel was later proposed as the end effector of the 
cardioprotective signaling cascade, although the existence of 
this channel remained disputed for many years (Cohen et al., 
2000; Paggio et al., 2019). The beginning of the 21st century 
was marked by research suggesting the involvement of the 
mitochondrial permeability transition pore (MPTP) whose 
identification has also revealed to be challenging (Downey 

et al., 2007). The discovery of the reperfusion injury salvage 
kinase (RISK) pathway also represented a major advance in the 
understanding of the cardioprotective signaling pathways, with 
the activation of both protein kinase B (Akt) and extracellular 
signal-regulated kinase (ERK) at the onset of reperfusion 
having proved to play a key role to limit infarct size following 
an ischemic conditioning stimulus (Schulman et al., 2002). In 
2009, we described the activation of the survivor activating 
factor enhancement (SAFE) pathway as an alternative path to 
the RISK pathway for cardioprotection (Lecour, 2009a). The 
SAFE path is triggered by the activation of the immune system 
with tumor necrosis factor-alpha (TNF) initiating the activation 
of a myriad of prosurvival components including signal 
transducer and activator of transcription 3 (STAT3) (Lecour, 
2009b).

The SAFE pathway and its origins
The research that led to the discovery of the SAFE pathway 
goes back to 2000 when data published by Douglas Mann’s 
group triggered our curiosity. Although TNF was known as 
a cytokine contributing to cardiac dysfunction in the context 
of heart failure, his group observed that mice with TNF 
receptor 1 (TNFR1) and TNF receptor 2 (TNFR2) deficiency 
presented with a larger left ventricular infarct size compared 
to their littermate controls when subjected to an ischemia-
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reperfusion injury (Kurrelmeyer et al., 2000). These data 
suggested that TNF may trigger some cardioprotective 
intrinsic signaling pathways and this led us to hypothesize that 
endogenous TNF may play an important role as a signaling 
component involved in the cardioprotective effect of ischemic 
conditioning.  Using an isolated heart model, we discovered 
that TNF was able, in a dose dependent manner, to limit 
infarct size in hearts subjected to an ischemia-reperfusion 
injury when given as a preconditioning stimulus (Lecour et 
al., 2002).  Similar findings were confirmed using an in vivo 
model of ischemia-reperfusion injury (Deuchar et al., 2007). 
Most importantly both ischemic pre- and post-conditioning 
failed to reduce the infarct size in mouse hearts from TNF 
knockout mice (Smith et al., 2002; Lacerda et al., 2009). When 
TNF was given as a preconditioning mimetic in mouse hearts, 
cardioprotection occurred in TNFR1 deficient mice but failed 
to protect in TNFR2 deficient mice, therefore suggesting that 
the cardioprotective effect offered with TNF is mediated via 
TNFR2 (Lacerda, 2009).  Trying to delineate downstream 
targets of TNF, we found that both ischemic preconditioning 
and pharmacological conditioning with TNF increased the 
activation of STAT3 and failed to protect cardiomyocytes in 
STAT3 deficient mice (Lecour et al., 2005b; Suleman et al., 
2008), therefore pinpointing STAT3 as a downstream target of 
TNF for cardioprotection. Although STAT3 was already known 
as a downstream target of interleukin 6, (another key component 
of the immune system) via the activation of glycoprotein 130, 
its activation by TNF and TNFR2 at the time was very intuitive 
(Kurdi and Booz, 2007). Today, the exact mechanisms by which 
TNF may activate STAT3 still remain to be elucidated. The 
dimerization (and therefore activation) of STAT3 is mediated 
via nicotinamide adenine dinucleotide dehydrogenase 1 
alpha subcomplex 13 (NDUFA13), which is a subunit of the 
mitochondrial complex I (Hu et al., 2017). Most importantly, 
the activation of STAT3 downstream of TNFR2 activates optic 
atrophy 1 protein (OPA 1), which promotes mitochondrial 
fusion (Nan et al., 2017). Other downstream targets include the 
activation of protein kinase C, free radicals, the mitochondrial 
potassium ATP dependent channel, and the inhibition of the 
proapoptotic protein Bcl-2 antagonist of cell death (BAD) 

(Lecour et al., 2002; Lecour et al., 2005a; Boengler et al., 
2010; Boengler et al., 2013). Activated STAT3 translocates to 
the mitochondria and inhibits the opening of the MPTP, thus 
preventing mitochondrial leakage, and thereby improving the 
outcome of ischemia-reperfusion injury by maintaining cellular 
energy functions (Boengler et al., 2010). Very recently, we have 
also identified microRNAs as downstream targets of STAT3 for 
cardioprotection. Indeed, a microarray analysis performed in 
both control and STAT3 knockout mice suggested that miR-34b 
and miR-337 are downregulated downstream of STAT3 (Pedretti 
et al., 2019). Furthermore, in isolated cardiomyocytes, the 
expression of miR-34b and miR-337 was increased by hypoxia 
in isolated cardiomyocytes and reduced by cardioprotective 
strategies. In cardiomyocytes transfected with miRNA mimics, 
cardioprotective strategies failed to improve cell viability 
against hypoxia (Pedretti et al., 2019).

The activation of the SAFE path has been identified 
with different forms of conditioning including ischemic 
p r e c o n d i t i o n i n g  ( L e c o u r  e t  a l . ,  2 0 0 5 b ) ,  i s c h e m i c 
postconditioning (Lacerda et al., 2009), and remote ischemic 
conditioning (Tamareille et al., 2011). Crosstalk between the 
SAFE and the RISK paths has been suggested. In rodents 
subjected to an ischemia-reperfusion insult, a conditioning 
protocol failed to activate the key components of the RISK 
pathway Akt or ERK in the presence of a STAT3 inhibitor 
(Suleman et al., 2008; Tamareille et al., 2011; Somers et al., 
2012). In a similar manner, inhibitors of Akt that blocked 
signling through the RISK pathway abolished the protection of 
an ischemic conditioning protocol, and this was associated with 
a failure to activate STAT3  (Suleman et al., 2008; Tamareille et 
al., 2011; Somers et al., 2012).    

A particularity of the SAFE path compared to the RISK path 
is that it is activated both during the conditioning stimulus and 
at the onset of reperfusion following a conditioning protocol. 
Inhibitors of STAT3 activation such as AG490 abolished the 
cardioprotective effect of ischemic preconditioning when 
given either during the  preconditioning stimulus (Suleman et 
al., 2008) or at the onset of reperfusion (Lecour et al., 2005b). 
Furthermore, STAT3 activation was observed at both time 
points (Lecour et al., 2005b; Suleman et al., 2008).  

Figure 1. Cardiovascular risk factors such as age, gender, diabetes, and hypertension may affect the benefit of cardioprotective strategies by 
modulating the activation of the SAFE pathway. TNF: tumor necrosis factor alpha; STAT3: signal transducer and activator of transcription 3.
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Do all conditioning strategies activate the SAFE pathway? 
The cardioprotective effect of ischemic preconditioning, 
ischemic postconditioning, and remote conditioning have all 
been identified as being dependent on the activation of the 
SAFE pathway (Lecour 2005; Lacerda 2009; Tamareille 2011). 
Similarly, multiple pharmacological pre- or post-conditioning 
drugs activate the SAFE pathway for cardioprotection and these 
include: glyceryl trinitrate, cariporide, growth hormones release 
hormone, erythropoietin, oxytocin, hydrogen sulphide, high 
density lipoproteins, apolipoprotein A, sphingosine-1 phosphate, 
anaesthetics, melatonin, and resveratrol (Lecour et al., 2005b; 
Fuglesteg et al., 2008; Calvert et al., 2009; Lacerda et al., 2009; 
Amantea et al., 2011; Lamont et al., 2011; Tamareille et al., 
2011; Frias et al., 2012; Park et al., 2013; Penna et al., 2013; 
Watson et al., 2013; Kalakech et al., 2014; Brulhart-Meynet et 
al., 2015; Kwan et al., 2015; Sun and Mao, 2018) (see figure 1). 
Conditioning with exercise or hypothermia also activates the 
SAFE path (Park et al., 2013; Sun and Mao, 2018).

Does the SAFE pathway offer multi-organ protection?
Although initially discovered to protect against cardiac 
ischemia-reperfusion injury, there is clear evidence that 
activation of the SAFE path to promote cell survival can also 
occur in other organs such as the brain (Wang et al., 2010; 
Sakata et al., 2012; Niemi et al., 2016), liver (Lee et al., 2016), 
lungs (Luo et al., 2018), hindlimbs (Han et al., 2016), and 
kidney (Dube et al., 2017). Surprisingly, remote liver ischemic 
preconditioning protects against cerebral ischemia-reperfusion 
injury via mechanisms, which may be independent of STAT3 
activation (Yang et al., 2020).

Do traditional risk factors affect the effectiveness of the 
SAFE pathway?
Ischemic heart disease is often caused by or is associated with 
multiple risk factors including age, gender, hypertension, and 
diabetes. Most of these risk factors are known to alter many 
intrinsic cardiac signaling pathways in both physiological and 
pathophysiological conditions, and multiple studies suggest 
that they negatively interfere with the effectiveness of ischemic 
conditioning, most likely by modifying the sensitivity of the 

activation of prosurvival signaling pathways (see review by 
Ferdinandy et al., 2014). There is now strong evidence in the 
literature supporting that the SAFE pathway is also affected by 
these risk factors.

Age
Experimental data support evidence that aging affects the 
efficacy of conditioning with a lack of protection observed 
with ischemic postconditioning and remote ischemic 
conditioning in older rodents (Somers et al., 2011; Adam et 
al., 2013; Behmenburg et al., 2017; Heinen et al., 2018). TNF-
mediated cardioprotective signalling pathways are impaired 
with aging (Cai et al., 2003). Most importantly, Boengler and 
colleagues reported that the lack of protection with ischemic 
postconditioning, observed in aged mice compared to younger 
animals, was associated with a lack of phosphorylation of 
STAT3 (Boengler et al., 2008). These data strongly suggest that 
reduced activation of the SAFE path with aging may contribute 
to the lack of protection with conditioning in aged mice. 

Gender
Female and male hearts present a difference in susceptibility 
against ischemia-reperfusion injury with smaller infarcts 
observed in female compared to male when subjected to 
the same ischemia-reperfusion insult (Ostadal et al., 2009; 
Penna et al., 2009). Gender may also affect the effectiveness 
of conditioning. The benefit of ischemic postconditioning is 
larger in males compared to females, an effect which might 
be explained by the fact that the females were already better 
protected without the conditioning protocol (Penna et al., 2009). 
It is highly possible that some of these gender differences 
may be explained by a gender difference in sensitivity of the 
activation of the SAFE path. Indeed, gender differences in 
TNF signaling after ischemia/reperfusion have been reported, 
including a greater activation of TNFR2 in females compared 
to males (Wang et al., 2006; Wang et al., 2008). Similarly, male 
hearts subjected to an ischemia-reperfusion injury expressed 
a lower level of activated STAT3 compared to female hearts, 
an effect which was reversed in castrated males (Wang et al., 
2009).

Diabetes 
In both type 1 and type 2 diabetic animals, an increase in 
infarct size following an ischemia-reperfusion injury was 
observed, most likely as a consequence to an increase in 
hyperglycemia induced oxidative stress associated with the 
disease (see review (Lejay et al., 2016)). With no surprise, 
the cardioprotective effect of ischemic preconditioning and 
ischemic postconditioning was also compromised in diabetic 
animals (Przyklenk et al., 2011; Tyagi et al., 2019). The 
increased susceptibility of ischemia-reperfusion injury in the 
diabetic rats was associated with a decrease in STAT3 activation 
(Li et al., 2013). Similarly, STAT3 failed to be phosphorylated 
following a pharmacological or an ischemic conditioning 
stimulus in streptozotocin-induced diabetic rats (Li et al., 2013; 
Lei et al., 2019). 

Hypertension
In  spon taneous ly  hype r t ens ive  r a t s ,  i s chemic  and 
pharmacological preconditioning confer benefits against 
ischemia-reperfusion injury (Boutros and Wang, 1995). 
Surprisingly, ischemic postconditioning failed to protect 
in spontaneously hypertensive rats, (Penna et al., 2010; 
Wagner et al., 2013), an effect that is attributed to the lack of 
phosphorylation of glycogen synthase kinase 3 (Gsk-3β), as 
Gsk-3β inhibitors restored the protection (Gonzalez Arbelaez 
et al., 2013). In contrast, postconditioning was successful 
in protecting rats with hypertensive dilated cardiomyopathy 

Table 1: Different conditioning stimuli confer cardioprotection via 
the activation of the survivor activating factor enhancement (SAFE) 
pathway. This path involves the activation of tumor necrosis factor 
alpha (TNF) and the signal transducer and activator of transcription 3 
(STAT3) to promote cell survival.

HDL: High density lipoprotein; ApoA: Apolipoprotein A; S1P: 
Sphingosine-1 phosphate; GH: Growth hormone.
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induced by administration of angiotensin II (Hernandez-
Resendiz et al., 2013), an effect mediated by activation of 
Akt. Although remote ischemic and normobaric hypoxic 
conditioning can reduce blood pressure in hypertensive patients, 
there is no knowledge as to whether the SAFE pathway may be 
altered in the presence of hypertension (Lyamina et al., 2011; 
Madias, 2015).

In conclusion, the discovery of the SAFE path has brought 
a better understanding to the intrinsic prosurvival signaling 
cascade involved in conditioning-induced cardioprotection. 
Although the end targets of the SAFE pathway are still 
unknown, the discovery of this pathway has the potential to 
develop novel therapies/strategies to limit ischemia-reperfusion 
injuries by targeting some components of this pathway such 
as specific miRNAs, for example. It is important, however, to 
keep in mind that, if the activation of this pathway has been 
confirmed in small animals and pigs, its protective effect still 
needs to be confirmed in patients in which many co-morbidities 
and co-medications may affect its effectiveness.
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