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The transient receptor potential Ankyrin 1 signaling 
pathway in hypoxic preconditioning

Francesco Moccia1 and Michele Samaja2

Hypoxic preconditioning has the potential to represent a valuable intervention to trigger and amplify the body’s endogenous 
protection against stress. In contrast with classical ischemic preconditioning, hypoxic preconditioning is a non-invasive 
procedure that can be applied in multiple ways, such as by breathing gas mixtures with variable oxygen concentrations 
or by varying the body’s oxygen consumption via physical exercise. As far as the cardiovascular system is concerned, such 
interventions target multiple sub-systems, triggering various systemic responses and causing elevated cellular and molecular 
changes. Such changes interact collectively to lead to a cardioprotection outcome. Among the potentially involved cellular and 
molecular changes, here we focus on the pathway that originates from the modulation of CA2+ entry into the cardiac myocytes 
via the transient receptor potential Ankyrin 1 (TRPA1) channel. Being hypoxia-sensitive because it is strictly associated with 
hypoxia-inducible factors, this pathway may represent an ideal link between hypoxic preconditioning and the insurgence 
of cardioprotection. Here, we briefly review the mechanisms of action of TRPA1 in the cardiovascular system that could be 
recruited by TRPA1-mediated extracellular Ca2+ entry during hypoxic preconditioning. The availability of dietary and synthetic 
TRPA1 agonists that may potentially activate TRPA1 for cardioprotective purposes may open new frontiers to design novel 
therapeutic approaches for preconditioning medicine.
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Introduction 
Preconditioning is broadly defined as the situation that occurs 
when a tissue, an organ, or even the entire body is exposed 
repeatedly to sublethal stresses or stimuli to gain resilience 
against potentially lethal stresses or stimuli (Holcombe and 
Weavers, 2022). The root of this phenomenon is hormesis, a 
complex event first examined in toxicologic studies: while a 
high-dose contact with a harmful agent is accompanied by toxic 
effects, a low-dose contact with the same agent may call for 
beneficial effects instead (Mattson, 2008). This biphasic dose 

response to environmental agents occurs in several instances. 
For example, myocardial ischemic preconditioning (IschPrec), 
first discovered in 1986 (Reimer et al., 1986), is a representative 
example of preconditioning medicine. In myocardial IschPrec, 
previous exposures to brief periods of vascular occlusion 
make the heart resistant to the subsequent effects of major 
ischemic events. As no known pharmacological or procedural 
interventions are yet recognized to be as efficient, IschPrec is 
still the most potent maneuver to improve cardioprotection in 
experimental models. However, translating IschPrec into clinical 

Highlights
Hypoxic preconditioning is an emergent procedure that can be applied actively (e.g., physical exercise) or passively (e.g., breathing 
gas mixtures with variable oxygen levels) to raise cardioprotection. A multitude of subsystems, systemic responses, as well as 
cellular and molecular changes mediate the translation of hypoxic preconditioning into protective signals. Among these, the 
modulation of calcium entry via the interaction between the factors induced by hypoxia and the hypoxia-sensitive transient receptor 
potential ankyrin 1 (TRPA1) channel may be a key driver of hypoxic preconditioning in the cardiovascular system. The availability 
of dietary and synthetic TRPA1 agonists may open a new frontier for designing therapeutic approaches to preconditioning 
medicine.
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practice has proved disappointing, despite the identification of  
the main mechanisms that confer protection, mainly endothelial 
nitric oxide (eNOS)-protein kinase G (PKG), reperfusion injury 
salvage kinase (RISK), survivor activating factor enhancement 
(SAFE), ATP-sensitive potassium ( K+) channels, and calcium 
(Ca2+) overload (Comita et al., 2021). One reason for this poor 
clinical translation is perhaps the complex nature of IschPrec, as 
it involves not only the contracting cardiomyocytes but also the 
endothelium, the microcirculation, the immune system, cardiac 
remodeling, the coagulation cascade, and, more recently, the 
onset of inflammation (Algoet et al., 2023). Another reason is 
the invasive nature of classical IschPrec. To overcome the latter 
concern, non-invasive alternatives such as remote conditioning, 
post-conditioning, delayed IschPrec, perhaps physical exercise, 
and hypoxic preconditioning (HypPrec) have been occasionally 
proposed.
     Here, we briefly review the mechanisms induced by 
HypPrec, which involves a novel key pathway that can be 
activated by hypoxia and targets Ca2+-sensitive cardioprotective 
mechanisms, the transient receptor potential (TRP) ankyrin 
1 (TRPA1) pathway. To this purpose, we conducted a 
comprehensive literature search across PubMed, Google 
Scholar, and Web of Science using the following keywords: 
TRPA1, hypoxia, hypoxic preconditioning, cardioprotection, 
heart, cardiovascular disorders, cardiomyocytes, endothelial 
cells, and cardiac fibroblasts. The present review is not intended 
as a systematic review that follows the PRISMA guidelines, but 
it nevertheless suggests that TRPA1 signaling could be activated 
during HypPrec and may stand out as a potential target to 
design novel therapeutic approaches based on preconditioning 
medicine.

Hypoxic preconditioning
HypPrec today is emerging as a powerful approach to 
raise protection in virtually all body organs, including the 
cardiovascular system. HypPrec can be administered in 
multiple ways by exposing experimental animals and human 
subjects to high- or low-frequency intermittent hypoxia, 
continuous hypoxia for sustained periods as during sojourns 
at high altitude, or even by alternating hypoxia and hyperoxia 
(Burtscher et al., 2023). Remarkably, all these interventions are 
noninvasive and may also be administered to passive subjects, 
such as unconscious or paralyzed patients.  
     These interventions trigger several systemic responses in 
virtually every body compartment to accomplish their effects. 

Such responses, in turn, trigger cellular and molecular responses 
that collectively stimulate the processes leading to HypPrec 
(Burtscher et al., 2023). Table 1 reports some of the major 
targets for HypPrec related to the insurgence of protection in 
the cardiopulmonary system.
     HypPrec represents the culmination of a complex interaction 
across several sub-systems, each of which independently 
triggers multiple systemic responses that affect many 
overlapping signaling pathways. Most, but not all, of the 
signaling pathways affected by HypPrec may originate from the 
intracellular accumulation of hypoxia-inducible factors (HIF) 
that act as cell and body oxygen (O2) sensors. Remarkably, this 
orchestrator of the body’s response to hypoxia responds to both 
a lack of oxygen (O2) and excess O2 (Mancardi et al., 2022). 
Thus, it is difficult to believe that HIF is the only mechanism 
underlying the complex response to O2 variations. Clearly, 
many molecular pathways interact to yield such an extensive 
outcome, HypPrec, which occurs in virtually all systems in the 
body in response to major stress.

TRPA1 and its effect on the protection of the cardiovascular 
system

TRPA1: biophysics and gating 
TRPA1 is a unique member of the TRP Ankyrin (TRPA) 
subfamily of non-selective cation channels in mammals 
(Talavera et al., 2020). The eponymous feature of TRPA1 is 
the presence of sixteen ankyrin repeats domain (ARD) within 
the NH2 terminus of the protein channel, which regulates 
TRPA1 interaction with protein partners and TRPA1 activation 
by a variety of stimuli  (Talavera et al., 2020; Thakore et al., 
2020). TRPA1 is widely expressed in sensory neurons and 
non-neuronal cells (Negri et al., 2019; Talavera et al., 2020; 
Thakore et al., 2020; Liu et al., 2021; Oguri et al., 2021; Berra-
Romani et al., 2023; McGarr et al., 2023), and modulates 
cellular activity by mediating an inward Na+ and Ca2+ current 
that depolarizes the membrane, thereby activating voltage-gated 
channels in excitable cells. In addition, the ensuing increase in 
intracellular Ca2+ concentration ([Ca2+]i) can recruit a plethora 
of Ca2+-dependent signaling pathways that confer TRPA1 the 
ability to modulate diverse functions in different cell types 
(Talavera et al., 2020; Thakore et al., 2020). 
     The fractional Ca2+ current carried by TRPA1 is relatively 
high (~17%) as compared to other TRP channels and can even 
be increased to ~23% by agonist-dependent modulation of 
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the ion-conduction pathway (Gees et al., 2010; Moccia and 
Montagna, 2023). In this view, TRPA1 is a remarkable example 
of a polymodal TRP channel being able to integrate chemical, 
physical, and thermal stimuli (Talavera et al., 2020; Thakore 
et al., 2020; Moccia and Montagna, 2023). TRPA1 is also a 
temperature-sensitive channel that can be activated by both 
noxious heat (>43°C) and noxious cold (<12°C) (Moparthi 
et al., 2016; Vandewauw et al., 2018; Moparthi et al., 2022), 
although its role in the cold sensation by thermal Ad fibers is 
still controversial (Zhang et al., 2022). In addition, TRPA1 is 
sensitive to many electrophilic and non-electrophilic agonists 
that covalently or non-covalently, respectively, modulate 
TRPA1 activation (Talavera et al., 2020; Thakore et al., 2020). 
Electrophilic activators (such as allicin, allyl isothiocyanate or 
AITC, and cinnamaldehyde) interact with the thiol (-SH) group 
of cysteine (Cys)621, Cys641, and Cys665 that are located 
within the NH2 terminus between the last ARD and the first 
transmembrane a-helix (Michlig et al., 2016; Talavera et al., 
2020; Alvarado et al., 2021; Moccia and Montagna, 2023). 
Sulfhydryl-reacting compounds that activate TRPA1 include 
many irritant compounds, such as acrolein, diesel exhaust, and 
anesthetics (Talavera et al., 2020; Alvarado et al., 2021; Moccia 
and Montagna, 2023). Covalent modifications of specific Cys 
residues also underlie TRPA1 sensitivity to reactive oxygen 
species (ROS) and reactive nitrogen species (RNS), which are 
regarded as endogenous agonists of TRPA1 (Talavera et al., 
2020; Alvarado et al., 2021; Moccia and Montagna, 2023). For 

instance, TRPA1 can be directly gated by hydrogen peroxide 
(H2O2) (Bessac et al., 2008; Faris et al., 2023), hydrogen sulfide 
(H2S) (Kimura, 2024), nitric oxide (NO) (Miyamoto et al., 
2009), and peroxynitrite (ONOO-) (Andersson et al., 2015). A 
growing body of evidence suggests that the lipid peroxidation 
product 4-hydroxynonenal (4-HNE) is the most widespread 
endogenous agonist of TRPA1 in mammalian cells (Andersson 
et al., 2008; Talavera et al., 2020; Alvarado et al., 2021; Moccia 
and Montagna, 2023). Moreover, TRPA1-mediated inward 
currents can also be induced by two similar peroxidation 
products, 4-hydroxyhexenal and 4-oxo-nonenal (Andersson 
et al., 2008). Finally, TRPA1 activation is also sensitive to 
intracellular acidification (Riva et al., 2018), depletion of 
phosphatidylinositol-4,5-bisphosphate (Kim et al., 2008),  and 
changes in intra- and extra-cellular [Ca2+] (Jordt et al., 2004; 
Wang et al., 2008). Therefore, TRPA1 is a highly versatile 
channel that integrates multiple cues from the surrounding 
environment, thereby setting the most appropriate cellular 
response in motion.

TRPA1 in cardiovascular protection
The pharmacological modulation of TRP channels, including 
by TRP vanilloid 1 (TRPV1), TRP melastatin 8 (TRPM8), 
and TRPA1, is coming of age as a novel strategy that protects 
against a growing number of cardiovascular disorders, including 
ischemia/reperfusion injury, heart failure, atherosclerosis, 
hypertension, and critical limb ischemia (Moran, 2018; Moccia 
et al., 2019; Wang et al., 2019; Negri et al., 2020; Szabados et 
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al., 2020; Moccia et al., 2022a; Moccia et al., 2022b; Bao et al., 
2023; Jesus et al., 2023). Understanding which of the multiple 
cellular components of the cardiovascular system are endowed 
with TRPA1 is an essential step to designing an effective 
multitarget strategy based on HypPrec  (Davidson et al., 2019). 
TRPA1 is widely expressed in the cardiovascular system (Wang 
et al., 2019), especially in vascular endothelial cells (Sullivan 
et al., 2015; Thakore et al., 2021; Berra-Romani et al., 2023; 
McGarr et al., 2023), cardiac myocytes (Andrei et al., 2016; 
Andrei et al., 2019; Conklin et al., 2019), fibroblasts (Oguri et 
al., 2021), and intracardiac nociceptive fibers (Hoebart et al., 
2021; Wang et al., 2022). Although a recent investigation has 
raised doubt against TRPA1 (and TRPV1) expression in cardiac 
myocytes (Hoebart et al., 2021), this discrepancy could be due 
to the different sensitivities of the anti-TRPA1 antibodies (Bao 
et al., 2023), some of which fail to detect TRPA1 protein either 
in Western blot or immunocytochemistry assays (Virk et al., 
2019), or inappropriate signal-to-noise ratio (Bao et al., 2023). 
Conversely, TRPA1 is expressed at the mRNA level (Bugert 
and Kluter, 2006) but not as a protein in platelets (Albarran et 
al., 2013), while its expression in vascular smooth muscle cells 
(VSMCs) has never been reported.

TRPA1-mediated Ca2+ entry recruits vasodilating pathways in 
vascular endothelial cells
The functional expression of endothelial TRPA1 channels has 
been reported in several vascular regions (Table 2), including 
brain (Sullivan et al., 2015; Thakore et al., 2021; Berra-
Romani et al., 2023), cutaneous (Pozsgai et al., 2010; McGarr 
et al., 2023), and mesenteric districts (Pozsgai et al., 2010; Jin 
et al., 2019), where TRPA1 activation leads to vasodilation 
and increased  local blood flow (Gao et al., 2020; Thakore 
et al., 2020; Alvarado et al., 2021; Moccia et al., 2022a). 
TRPA1-mediated Ca2+ entry can recruit at least two distinct 
endothelium-dependent vasorelaxant pathways (Figure 1), 
i.e., eNOS and intermediate- and small-conductance Ca2+-
activated K+ channels (IKCa and SKCa, respectively) (Earley et 
al., 2009; Gao et al., 2020; Thakore et al., 2020; Alvarado et 
al., 2021; Negri et al., 2021; Moccia et al., 2022a). The eNOS 
and IKCa/SKCa channels can act in synergy to induce a local 
NO-dependent increase in blood flow at the  capillary level, 

which then spreads to upstream arterioles through IKCa/SKCa-
mediated endothelium-dependent hyperpolarization (EDH) 
to steal blood from inactive tissue areas (Pozsgai et al., 2010; 
Earley, 2011; Sullivan et al., 2015; Guerra et al., 2018; Thakore 
et al., 2021; Moccia et al., 2022a; McGarr et al., 2023). It 
has been reported that cinnamaldehyde exerts endothelium-
independent vasorelaxation in ex vivo aortic rings (Yanaga et 
al., 2006). However, high doses of cinnamaldehydes can inhibit 
the voltage-gated L-type Ca2+ channels that are expressed in 
VSMCs (Alvarez-Collazo et al., 2014), which might explain the 
endothelium- and TRPA1-independent vasorelaxing effect of 
this compound (Talavera et al., 2020).
     Vasodilation can also be induced by the pharmacological 
activation of TRPA1 expressed on nociceptive neurons 
of dorsal root ganglion (Gao et al., 2020), which causes 
peripheral vasodilation through the release of the vasorelaxant 
neuropeptides, calcitonin gene-related peptide (CGRP) and 
substance P, and of the gasotransmitter NO (Kunkler et al., 
2011; Pozsgai et al., 2012; Aubdool et al., 2016; Hajna et 
al., 2016). Endothelial TRPA1 channels may also stimulate 
angiogenesis in the corneal stroma and prostate cancer (Negri 
et al., 2019) while negatively regulating neovessel formation in 
coronary circulation (Li et al., 2020a). The dual role of TRPA1 
in angiogenesis could be explained by its selective coupling to 
distinct Ca2+-dependent pathways in different vascular beds, 
which is a typical feature of many Ca2+-permeable pathways in 
the vascular endothelium (Moccia et al., 2023a).

TRPA1-mediated Ca2+ entry activates cardioprotective 
pathways in cardiomyocytes 
Several studies have shown that TRPA1 activation in the heart is 
cardioprotective against ischemia/reperfusion injury (Lu et al., 
2016; Andrei et al., 2019; Alizadehasl et al., 2024) and prevents 
myocardial fibrosis (Li et al., 2020b; Ma and Wang, 2022). 
An early study showed that the pharmacological stimulation 
of TRPA1 prior to ischemia significantly reduced the infarct 
size in a rat model of  acute myocardial infarction (Lu et al., 
2016). Similarly, topical application of the analgesic cream, 
IcyHot, prior to myocardial ischemia also reduced the infarct 
size in a TRPA1-dependent manner (Wu et al., 2021). IcyHot 
was found to release methyl salicylate into the bloodstream 

Figure 1. TRPA1-mediated Ca2+ entry recruits Ca2+-dependent vasorelaxant pathways in proximity to the vascular wall. Extracellular Ca2+ 
entry through TRPA1 can stimulate eNOS activity, resulting in robust NO release. In addition, TRPA1-mediated Ca2+ signals can activate the 
small- and intermediated-conductance Ca2+-dependent K+ channels, SKCa and IKCa, which causes endothelium-dependent hyperpolarization 
(EDH). EDH is then electrotonically propagated to adjacent vascular smooth muscle cells (VSMCs) through myo-endothelial gap junctions, 
thereby causing VSMC hyperpolarization and relaxation. An alternative mechanism by which TRPA1 activation can induce vasorelaxation is by 
stimulating the release of NO and CGRP (as well as substance P) from the sensory fibers in close contact with resistance vessels.
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during reperfusion, thereby triggering remote cardioprotection 
by activating TRPA1-dependent cardioprotective pathways (Wu 
et al., 2021). In vitro studies revealed that TRPA1-mediated 
Ca2+ entry can both enhance cardiomyocyte contraction and 
prevent cardiomyocyte cell death (Figure 2) (Alizadehasl et al., 
2024). In accord, TRPA1 can induce a positive inotropic and 
lusitropic effect by engaging Ca2+/calmodulin-dependent protein 
kinase II (CaMKII) (Andrei et al., 2017), which has long been 
known to stimulate the Sarcoplasmic Reticulum Ca2+ cycling 
(Figure 3) (Maione et al., 2020; Reyes Gaido et al., 2023). In 
addition, TRPA1 stimulation can prevent ischemia-induced 
cardiomyocyte cell death by recruiting the protein kinase B 
(Akt)/eNOS signaling pathway (Andrei et al., 2019). It should, 
however, be pointed out that TRPA1 is also sensitive to ROS, 
such as H2O2, and aldehydes (Conklin et al., 2019) that can 
be produced upon reperfusion (Wang et al., 2022). Therefore, 
the pharmacological activation of TRPA1 prior to inducing 
ischemia recruits Ca2+-dependent cardioprotective pathways 
that overcome the detrimental effects of Ca2+ overload at the 
time of reperfusion (Santulli et al., 2015; Rocca et al., 2023). 
A major hurdle of these studies consists in the assessment  of 
cardiomyocyte cell death by the lactate dehydrogenase assay 
(Andrei et al., 2019; Alizadehasl et al., 2024), which reflects 
membrane damage without discriminating the multiple modes of 
cell death (Kumar et al., 2018). The mechanisms responsible for 
cardiac injury during reperfusion do not include only apoptosis 
and necrosis but also necroptosis, ferroptosis, and pyroptosis 
(Davidson et al., 2020; Xiang et al., 2024). Future work should 
explore if TRPA1 activation protects against specific modes 
of cell death or if it results in global cardioprotective effects. 
Preliminary evidence suggests that TRPA1-mediated Ca2+ 
entry reduces the expression of the Ca2+-binding inflammatory 
protein, S100A8, thereby reducing pyroptosis in rat primary 
cardiomyocytes (Wang et al., 2023a). Interestingly, Lu et 
al. (2016) demonstrated that the selective, photosensitive 
TRPA1 agonist, optovin (Kokel et al., 2013), exerts a 
strong cardioprotective effect against ischemia/reperfusion 
injury. Furthermore, optovin has been shown to stimulate 
cardiomyocyte pacing in both zebrafish hearts in vivo and 
human stem cell-derived cardiomyocytes in vitro (Lam et al., 
2017). Optovin primarily targets the reactive cysteine residues 

that confer TRPA1 sensitivity to oxidative stress (Trevisani et 
al., 2007; Kokel et al., 2013; Moccia and Montagna, 2023). 
However, optovin-induced cysteine modifications are reversible 
(Kokel et al., 2013), while those induced by ROS and aldehydes 
are more resistant to  endogenous antioxidant systems (Lu et al., 
2016). The cardioprotective role of TRPA1 is further supported 
by the increased cardiovascular risk in patients treated with 
classical pain relievers that can block TRPA1 activation, such 
as cyclooxygenase-2 inhibitors or some nonsteroidal anti-
inflammatory drugs. during the perioperative period (Lu et al., 
2016).
TRPA1-mediated Ca2+ entry prevents myocardial fibrosis in 
cardiac fibroblasts
An additional mechanism by which TRPA1 activation can 
induce cardioprotection is by interfering with cardiac fibrosis. 
Cardiac fibroblasts are critical determinants of maladaptive 
ventricular remodeling after an ischemic event (Ma et al., 
2017). Intracellular Ca2+ signaling is also involved in cellular 
differentiation by engaging several Ca2+-dependent transcription 
factors that regulate cellular fate  (Moccia et al., 2015; Maione 
et al., 2022; Moccia et al., 2023c). Cardiac fibroblasts undergo 
programmed conversion into myofibroblasts after cardiac injury, 
thereby releasing a greater amount of extracellular matrix 
components and favoring cardiac fibrosis (Ma et al., 2017). 
A recent study showed that the genetic knockout of TRPA1 
accelerated aging-induced myocardial fibrosis, ventricular 
dilation, and cardiac dysfunction, which further hints at TRPA1 
as a suitable molecular target to promote cardioprotection 
(Ma and Wang, 2022). Consistent with this, Li et al. (2020b) 
showed that the pharmacological stimulation of TRPA1 can also 
ameliorate myocardial fibrosis by stimulating CGRP release 
from cardiac fibroblasts both in vitro and in a mouse model of 
cardiac fibrosis (Li et al., 2020b). CGRP can then autocrinally 
act by preventing transforming growth factor-b (TGF-b)-
induced cardiac fibroblast trans-differentiation via nuclear 
factor kappa-light-chain-enhancer of activated B cell activation. 
This mechanism could potentially be enhanced by TRPA1-
regulated CGRP release from intracardiac nociceptive fibers 
(Hoebart et al., 2021; Wang et al., 2022), which also supports 
cardiomyocyte survival during ischemia/reperfusion injury  
(Hoebart et al., 2023). Other studies confirmed that TRPA1 

Figure 2. TRPA1-mediated Ca2+ entry stimulates Ca2+-dependent cardioprotective pathways in cardiac myocytes. TRPA1-mediated Ca2+ entry 
stimulates CaMKII, which in turn phosphorylates sarcoendoplasmic reticulum Ca2+-ATPase 2a (SERCA) and type 2 ryanodine receptors (RyR2) 
to, respectively, sequester cytosolic Ca2+ more avidly (lusitropic effect) and release sarcoplasmic reticulum (SR) Ca2+ more efficiently (inotropic 
effect). In addition, TRPA1-mediated Ca2+ signals stimulate NO release by inducing Akt-dependent eNOS phosphorylation and, possibly, via 
direct eNOS activation. 
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deficiency can accelerate cardiac fibrosis in other cardiovascular 
disorders, such as dilated cardiomyopathy (Wang et al., 2023a). 
It should, however, be noted that other studies provided 
contrasting results showing that TRPA1 activation causes TGF-
b-induced cardiac fibroblast trans-differentiation both in vitro 
and in vivo (Wang et al., 2018; Li et al., 2019; Naert et al., 
2021; Wang et al., 2023b).  It has been suggested that the dual 
role of TRPA1 in cardiac fibrosis could depend either on the 
signaling pathway that triggers scar formation or on the stage 
of myocardial fibrosis (Gao et al., 2020). In addition, the role of 
TRPA1 signaling in immune cells should be considered (Naert 
et al., 2021). TRPA1 could drive macrophages towards the M2 
phenotype, favoring the infiltration of M2 macrophages in the 
heart, thereby aggravating pressure-overload induced cardiac 
hypertrophy and fibrosis (Wang et al., 2018). Therefore, the 
extent of macrophage polarization and macrophage recruitment 
into the cardiac interstitium could also determine whether 
TRPA1 activation primarily protects or exacerbates cardiac 
fibrosis.

TRPA1-mediated Ca2+ entry in macrophages inhibits 
atherosclerosis
TRPA1 activation in vascular macrophages, which are the 
major immune cell population in atherosclerotic lesions (Xu et 
al., 2019), counteracts M1 polarization, slowing atherosclerosis 
progression (Gao et al., 2020). TRPA1 expression was found 
to be increased in macrophage foam cells from the aorta of 
apolipoprotein E-deficient mice (Zhao et al., 2016). TRPA1 
stimulation with AITC retarded atherosclerosis progression 
and reduced the inflammatory response in atherosclerotic mice. 
Conversely, either the pharmacological blockade of TRPA1 
activity with HC-030031 or the genetic ablation of the TRPA1 
protein worsened atherosclerotic lesions, hyperlipidemia, and 
systemic inflammation (Zhao et al., 2016). A subsequent study 
confirmed these findings, showing that cinnamaldehyde could 
also decrease the atherosclerosis plaques through TRPA1 
activation. It was further shown that TRPA1-mediated Ca2+ 
entry reduced macrophage transition toward the inflammatory 
M1 phenotype while it favored M2 polarization (Wang et al., 
2020; Wang et al., 2023a), thereby contributing to activating 
anti-inflammatory and tissue repair responses (Perez and Rius-
Perez, 2022). Therefore, these findings strongly suggest that 

TRPA1 activation represents a promising strategy for anti-
atherosclerotic treatments (Gao et al., 2020).

TRPA1 in HypPrec
An intimate relationship between hypoxia and TRPA1 has 
recently been established (Figure 3) (Takahashi et al., 2011). 
Curiously, TRPA1 is not only sensitive to hypoxia but also 
to hyperoxia (Takahashi et al., 2011), which is also a crucial 
feature of HIF signaling (see above).

Association of hypoxia with TRPA1
TRPA1 expression is regulated by HIF-1a (Figure 3) (Hatano 
et al., 2012). In accord, the TRPA1 gene contains a specific 
hypoxia response element-like motif that can be bound by HIF-
1a, which can increase TRPA1 expression (Hatano et al., 2012). 
Moreover, both HIF-1a and TRPA1 proteins can be regulated 
by the hypoxia-sensing prolyl hydroxylases (PHDs) (Mori et al., 
2017; Talavera et al., 2020). Under normoxic conditions (~20% 
O2), PHD tonically inhibit TRPA1 activity via hydroxylation 
of Pro394, which is located on the NH2-terminal ARD domain 
of the channel protein (Takahashi et al., 2011). A reduction in 
PO2, therefore, relieves TRPA1 from PHD-dependent inhibition 
and stimulates TRPA1-mediated Ca2+ entry under hypoxia 
(Takahashi et al., 2011). The consensus sequence for PHD-
dependent hydroxylation flanking the Pro394 residue in TRPA1 
protein is the same as that present in the prolyl hydroxylation 
motif of HIF-1 and HIF-2 (Takahashi et al., 2011; Mori et 
al., 2017). In addition, hypoxia can stimulate the insertion 
of non-hydroxylated TRPA1 channel proteins on the plasma 
membrane, thereby further enhancing TRPA1-mediated Ca2+ 
entry (Takahashi et al., 2011). Currently, TRPA1 is regarded as 
a molecular sensor of local %O2  changes (Mori et al., 2017; 
Talavera et al., 2020). Therefore, hypoxia can potentially 
stimulate TRPA1 activation in the cardiovascular system and 
could play a role in HypPrec. In the next paragraph, we discuss 
the evidence that appropriate TRPA1 activation by hypoxia 
could recruit cardioprotective Ca2+-dependent pathways.

The role of hypoxia-induced TRPA1 activation in the 
cardiovascular system
Cerebrovascular endothelial cells are enriched with TRPA1, 
which is sensitive to ROS produced during neuronal activity 

Figure 3. Hypoxia regulates TRPA1 signalling. Under normoxic conditions, PHDs hydroxylate Pro354 on the NH2-terminal ARD domain of 
the TRPA1 protein, thereby inhibiting the channel and preventing basal Ca2+ entry. The drop in local %O2 under hypoxia inhibits PHD activity, 
which results in Pro354 dehydroxylation and TRPA1 activation.  In addition, hypoxia can lead to the insertion of non-hydroxylated TRPA1 
proteins on the plasma membrane, which also results in the increase of basal TRPA1-mediated Ca2+ entry. Finally, hypoxia can increase the 
expression of TRPA1 protein as the TRPA1 gene contains a hypoxia-sensitive element that is bound by HIF-1.
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and triggers an increase in local cerebral blood flow to match 
oxygen and nutrient perfusion with the increased neuronal 
demand (Alvarado et al., 2021; Thakore et al., 2021). Pires 
and Earley (2018) demonstrated that hypoxia stimulated 
TRPA1-mediated Ca2+ entry in the endothelial cells lining 
of mouse cerebral arteries, as also reviewed in (Alvarado et 
al., 2021). TRPA1-mediated Ca2+ signals mediated hypoxia-
induced vasodilation of cerebral arteries by recruiting IKCa/SKCa 
channels and promoting EDH. Consistent with these findings, 
cerebral damage after brain ischemia was significantly enhanced 
in TRPA1 knockout mice. Furthermore, the pharmacological 
activation of TRPA1 after the induction of brain ischemia 
reduced the infarct size and proved to be neuroprotective 
(Pires and Earley, 2018). Although future studies could 
compare the neuroprotective effect of TRPA1 activation prior 
to brain ischemia, these pieces of evidence strongly suggest 
that endothelial TRPA1 activity can reduce cerebral injury 
associated with brain stroke. 
     Hypoxia could also lead to TRPA1 activation in 
card iomyocytes .  Liu  e t  a l .  (2021)  showed tha t  the 
pharmacological and genetic blockade of PHD2 activity resulted 
in TRPA1-mediated Ca2+ entry in cardiomyocytes, followed 
by sarcoplasmic reticulum Ca2+ release via Ca2+-induced Ca2+ 
release through ryanodine receptors. TRPA1-mediated Ca2+ 
signals activated both CaMKII and adenosine monophosphate 
(AMP)-dependent protein kinase (AMPK) (Liu et al., 2021). 
CaMKII can enhance cardiac contractility, as discussed above, 
whereas AMPK can rescue energy metabolism and promote cell 
survival during hypoxia (Naryzhnaya et al., 2020; Popov et al., 
2023). Therefore, these findings strongly suggest that TRPA1 
activation during hypoxia can exert a cardioprotective effect on 
the heart.

The role of TRPA1 signaling in HypPrec: current 
perspectives
TRPA1 is emerging as a critical molecular tool to translate short 
hypoxic bursts into a cardioprotective signal. Future work is 
needed to solve the controversy regarding the ability of TRPA1 
to modulate cardiac fibrosis and to assess whether TRPA1 
activation in coronary endothelial cells may induce vasodilation 
and, possibly, post-ischemic neo-angiogenesis. Nevertheless, 
available evidence highlights TRPA1-based mechanisms as 
key drivers of the HypPrec process. In agreement with these 
observations, other members of the TRP superfamily have 
been shown to protect the cardiovascular system from ischemic 
insults (Randhawa and Jaggi, 2015). For instance, the ability 
of the TRPV1 pathway to induce cerebral IschPrec (Thushara 
Vijayakumar et al., 2016) as well as HypPrec in rat hearts 
(Lu et al., 2014) has been elucidated. Furthermore, TRPV1 
could also activate cardioprotective pathways during ischemic 
post-conditioning and remote ischemic post-conditioning 
(Randhawa and Jaggi, 2017). Vascular HypPrec also relies 
on TRPV4-dependent Ca2+influx and proper intercellular 
gap junctions’ communication (Rath et al., 2012). TRP-
based mechanisms are also involved in sevoflurane-mediated 
preconditioning, which promotes mesenchymal stem cells 
to relieve myocardial ischemia/reperfusion injury via TRP 
canonical 6 (TRPC6)-induced angiogenesis via HIF-1α, C-X-C 
chemokine receptor type 4, and vascular endothelial growth 
factor (Yang et al., 2021). It is worth pointing out that several 
dietary and synthetic TRPA1 agonists are now available that 
could pharmacologically exploit the activation of TRPA1 for 
cardioprotective purposes (Moccia et al., 2019; Talavera et 
al., 2020; Thakore et al., 2020; Alvarado et al., 2021). TRPA1 
signaling is likely to play a critical role during HypPrec. 
Confirming TRPA1 contribution could be instrumental in 
designing novel therapeutic approaches for preconditioning 
medicine. The cardioprotective effects of TRPA1 activation 

by the photosensitive agonist, optovin, shed novel light on the 
pharmacological manipulation of TRPA1 (Kokel et al., 2013; 
Lam et al., 2017). Optical stimulation of the target proteins 
offers an unprecedented spatio-temporal resolution to rescue 
the injured functions of a specific organ target (Di Maria et al., 
2018; Moccia et al., 2022b; Moccia et al., 2023b; Vurro et al., 
2023). Being itself photosensitive, optovin does not require the 
genetic manipulation of host cells, as required by optogenetics 
and chemogenetics (Di Maria et al., 2018). Unfortunately, 
optovin is sensitive to relatively short wavelengths (~400 
nm) that do not effectively penetrate tissue and are, therefore, 
not easily exploitable for therapeutic purposes. Nevertheless, 
a number of photosensitive nanomaterials, which are 
highly conformable, biocompatible, and suitable for in vivo 
applications, have recently been developed (Zucchetti et al., 
2017; Di Maria et al., 2018; Antognazza et al., 2019; Aziz and 
Antognazza, 2020). These nanomaterials, including regioregular 
Poly (3-hexyl-thiophene) (P3HT) (Lodola et al., 2019b; 
Moccia et al., 2022b; Negri et al., 2022; Criado-Gonzalez et 
al., 2023), poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-
ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]] 
(PCPDTBT) (Ronchi et al., 2024), poly[(2,6-(4,8-bis(5-(2-
ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-
alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-
c:4′,5′-c′]dithiophene-4,8-dione)] (PBDB-T), and poly[[4,8-
bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-
2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]
thiophenediyl]] (PTB7) (Tullii et al., 2023), are sensitive 
to longer wavelengths and generate ROS in response to 
light. It has been demonstrated that optical stimulation of 
photosensitive conjugated polymers, in the form of either thin 
films or nanoparticles, can stimulate angiogenesis and cardiac 
contraction through a mechanism that involves both ROS and 
TRPV1-mediated Ca2+ entry (Lodola et al., 2019a; Negri et 
al., 2020; Moccia et al., 2022b). However, this same signaling 
pathway has also been proposed to activate TRPA1 (Negri et 
al., 2020; Moccia et al., 2022b). Therefore, future studies that 
assess whether the photostimulation of conjugated polymers 
also results in cardioprotective effects upon TRPA1 activation 
would provide therapeutically relevant results. 

Conclusions
TRPA1 signaling is likely to play a critical role during HypPrec. 
Confirming TRPA1 contribution could be instrumental in 
designing novel therapeutic approaches for preconditioning 
medicine. A critical step is to determine how TRPA1-mediated 
Ca2+ entry protects cardiomyocytes from cell death. As outlined 
above, multiple mechanisms can contribute to cardiac injury 
or reperfusion, and although all of them ultimately lead to cell 
death, some are more prone to induce an inflammatory response 
than others (e.g., pyroptosis vs. necrosis and apoptosis) 
(Davidson et al., 2019; Davidson et al., 2020). The current 
evidence shows that TRPA1-mediated Ca2+ entry may inhibit 
pyroptosis (Wang et al., 2023a). Moreover, in some cancer 
cell types, TRPA1 is coupled with an antioxidant system that 
mitigates the oxidative stress and the mitochondrial Ca2+ 
overload associated with apoptosis (Moccia and Montagna, 
2023). Therefore, the cardiac TRPA1 could engage multifaceted 
signaling pathways that protect cardiomyocytes from various 
regulated cell death processes. The therapeutic translation of 
TRPA1 for  HypPrec strategies also requires the elucidation 
of its functional role in coronary VSMCs (if present) and 
endothelial cells (Davidson et al., 2019), as well as in pericytes 
(if present) (Frangogiannis, 2024), which regulate coronary 
flow and permeability. Being expressed in multiple cellular 
compartments of the cardiovascular system, TRPA1 could 
provide an ideal molecular target to activate the multitarget 
strategy that has recently been proposed as the most suitable 
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approach to reduce myocardial injury (Davidson et al., 2019). 
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