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Targeting calpains in myocardial ischemia/reperfusion 
injury
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Loss of intracellular Ca2+ homeostasis occurring during ischemia/reperfusion (IR) induces dysregulated overactivation of 
calpains, Ca2+-dependent cysteine proteases. In this review we describe the mechanisms of calpain activation and analyze the 
evidence for calpain contribution to myocardial reperfusion injury. Exaggerated calpain activation occurs during reperfusion 
after intracellular pH normalization, and results in altered contractility and cell death through the cleavage of numerous 
protein substrates involved in sarcolemmal structure, cellular contractility, mitochondrial function, and cellular signalling. 
Finally, we provide an overview of the calpain inhibitors that have been evaluated in experimental models of IR and the 
advances in the design of new potent and selective compounds that may serve as candidates for testing the efficacy of calpain 
inhibition in patients with acute myocardial infarction.
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1. Introduction 
The pathophysiology of reperfusion injury is a complex process 
that causes cardiomyocyte death via multiple mechanisms 
and involves the alteration and interplay of a variety of 
molecules and proteins (Davidson et al., 2019). A pronounced 
consequence of reperfusion is the generation of intracellular 
Ca2+ overload and a burst of reactive oxygen species (ROS), 
which have the potential to induce an anomalous increase 
in the activity of several enzymes. One of the families of 
proteins directly modulated by changes in the intracellular Ca2+ 
concentration are calpains, Ca2+-dependent, non-lysosomal 
cysteine proteases (Goll et al., 2003). Calpains are essential 
for many physiological processes regulated by Ca2+ including 
cell spreading and migration (Dewitt and Hallett, 2020), cell 
cycle (Santella, 1998), membrane repair (Mellgren et al., 
2007), embryonic development (Arthur et al., 2000), and 
platelet function (Azam et al., 2001). In contrast to other major 
proteolytic systems, calpains do not induce protein digestion 
but act in a regulatory way by performing limited proteolysis of 
their substrates. Its activity is tightly controlled by their specific 
endogenous inhibitor calpastatin and the energy-dependent 
regulation of Ca2+ homeostasis (Goll et al., 2003). However, 
under pathological conditions associated with the loss of 
intracellular Ca2+ control, as occurs during ischemia/reperfusion 

(IR), calpains are overactivated resulting in the proteolysis 
of a wide variety of proteins (Inserte et al., 2012). The use 
of transgenic models and calpain inhibitors demonstrate that 
calpain deregulation contributes to myocardial reperfusion 
injury through different mechanisms, which include increased 
sarcolemmal fragility and defects in Ca2+ handling, altered 
myofibrillar contractility, and mitochondrial dysfunction. 
Calpains are sensitive to cellular acidosis and they appear to 
activate only during reperfusion, once intracellular pH has 
been normalized (Hernando et al., 2010). This feature is critical 
because it provides a window of opportunity for preventing their 
activation. Yet, confirmation of the potential cardioprotective 
value of strategies designed to prevent calpain activation in 
clinically relevant experimental models is scarce, mainly due to 
the lack of appropriate compounds. Development of potent and 
selective calpain inhibitors is challenging, but ongoing research 
in the pharmaceutical industry and academia continuously 
generates potential candidates based on new structures or in 
the optimization of current compounds (Ono et al., 2016). 
As a result of these efforts, some of these compounds have 
entered clinical trials to test their safety and pharmacodynamics 
(Lon et al., 2019) (jRTC2021190013). Finally, recent data 
demonstrating the involvement of calpains in the development 
of adverse postinfarction myocardial remodelling has re-
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awakened interest for calpains as potential treatment target in 
patients with acute myocardial infarction.

2. Regulation of the calpain system 
At present, 15 calpain isoforms have been identified in humans. 
Some of these isoforms have tissue-specific distribution 
whereas others, including the most abundant and best studied 
forms, calpain-1 and calpain-2, are ubiquitously expressed. 
Both calpains are heterodimers composed of a large (80kDa) 
catalytic subunit (Capn1 and Capn2, respectively), and a 
small (30kDa) common regulatory subunit (Capn4) needed to 
maintain stability and activity of the large subunit (Goll et al., 
2003). These two isoforms differ in the concentration of Ca2+ 
required for their activation in vitro (Ono et al., 1998), which is 
substantially greater than the cytosolic concentrations achieved 
in normal beating cardiomyocytes. Additional mechanisms 
have been therefore proposed to contribute to lower the Ca2+ 
threshold of calpain activation reported in vivo. The most 
accepted one includes the translocation of calpain in its inactive 
form from the cytosol to the membrane where it binds to 
phospholipids reducing its Ca2+ requirements (Chakrabarti 
et al., 1996) or localizes in microdomains with high local 
Ca2+ concentrations (Kifor et al., 2003). However, although 
membranes are generally considered the preferential site of 
calpain activity, different studies suggest that under conditions 
of severe Ca2+ overload as those present during ischemia, 
translocation is not a critical step for calpain activation (Liu et 
al., 2001; Hernando et al., 2010). Calpastatin is the only specific 
endogenous inhibitor of calpain-1 and calpain-2. However, 
calpastatin has been shown to be largely downregulated during 
reperfusion due to the proteolytic activity of calpains, reducing 
its inhibitory function (Sorimachi et al., 1997; Hernando et al., 
2010). 

Several studies suggest that the oxidative/nitrosative stress 
generated during the first minutes of reperfusion may modify 
the activity of calpains. However, the mechanisms involved 
in the redox-regulation of calpain activity and their overall 
relevance in the context of acute reperfusion injury are still not 
fully understood (Randriamboavonjy et al., 2019). On the one 
hand, ROS can activate calpains indirectly via changes in Ca2+ 
levels. It has been described that ROS can elevate cytosolic 
Ca2+ by favouring calcium release from the sarcoplasmic 
reticulum and decreasing Ca2+ removal from the cell due to 
the oxidative damage of Ca2+ transporters (Itoh et al., 1999; 
Menshikova and Salama, 2000; Zima and Blatter, 2006). On 
the other hand, different studies suggest that calpain activity 
is inhibited by direct oxidation and S-nitrosylation of the 
protease (Michetti et al., 1995; Guttmann and Johnson, 1998). 
The resulting inactivation of calpains could partially explain 
the proposed cardioprotective effects of nitrosative signalling 
against reperfusion injury (Penna et al., 2014; Totzeck et al., 
2017). Other post-translational modifications that have been 
proposed to modulate calpain activity include phosphorylation 
by protein kinase A (PKA) and extracellular signal-regulated 
kinase (ERK) (Shiraha et al., 2002; Glading et al., 2004), and 
carbonylation (Norberg et al., 2010). Although PKA and ERK 
have been implicated in the mechanisms of IR injury and 
cardioprotection (Hausenloy and Yellon, 2006), and IR has been 
shown to increase protein nitrosylation (Hamilton et al., 2004) 
and carbonylation (Khaliulin et al., 2006), whether or not these 
protein modifications are relevant modulatory mechanisms of 
calpain activation during IR compared to Ca2+ overload has not 
yet been determined. 

Highlights: calpain activity is tightly regulated by variations 
in Ca2+ concentration and calpastatin. Although post-
translational modifications of calpains have been reported, their 
pathophysiological relevance remains to be determined.

3. Calpain contribution to acute myocardial reperfusion 
injury
Experimental evidence obtained using several independent 
approaches, including the cleavage of known calpain 
substrates, the measurement of cellular calpain activity, and 
the use of calpain inhibitors and transgenic animals with 
altered calpain system in a variety of experimental models of 
IR, unambiguously demonstrate that calpains are important 
contributors to IR injury in the heart (Inserte et al., 2012; 
Neuhof, 2014) (see Table 1). This is not surprising, as IR is 
associated with a significant and sustained alteration of Ca2+ 
homeostasis in cardiomyocytes (Garcia-Dorado et al., 2012). 
Importantly, intracellular pH (pHi) determines the time-course 
of calpain activation secondary to transient ischemia. Our 
group has reported that ischemia-induced intracellular acidosis 
inhibits calpain activation despite Ca2+ overload, while the rapid 
pHi normalization during reperfusion allows its overactivation 
(Hernando et al., 2010). In agreement with that, experimental 
interventions applied in Langendorff-perfused hearts specifically 
addressed to delay pHi recovery (i.e. acidic perfusion) or those 
interfering with pHi normalization during the first minutes of 
reperfusion (i.e. ischemic postconditioning), attenuated calpain 
activation and reduced reperfusion injury (Inserte et al., 2009). 
The causative role of calpains on reperfusion-induced cell death 
has been established by experiments in which the administration 
of calpain inhibitors exclusively during reperfusion reduced 
infarct size in in vivo and in situ models of IR (Neuhof et al., 
2008; Hernando et al., 2010). Several mechanisms, summarized 
in Figure 1, have been proposed to explain the contribution of 
calpains to reperfusion injury.

3.1 Sarcolemmal fragility 
Calpain activation during IR is implicated in the degradation 
of various sarcolemmal and cytoskeletal proteins (Neuhof, 
2014). Calpain-dependent cleavage of α-fodrin, which form the 
backbone of the membrane cytoskeleton (Bennett and Gilligan, 
1993), has been associated with increased membrane fragility 
(Armstrong et al., 2001). Upon conditions of mechanical stress, 
as those imposed by myocardial reperfusion, α-fodrin cleavage 
reduces the tolerance of the sarcolemma to the mechanical 
stress induced by cell contraction and swelling and increases 
the probability of sarcolemmal rupture and cardiomyocyte 
necrosis (Inserte et al., 2004). Other calpain substrates that may 
contribute to increase sarcolemmal fragility include dystrophin, 
talin, paxilin, vinculin, filamin, tau, α-tubulin, and vimentin 
(Davies et al., 1978; Nelson and Traub, 1983; Yoshida et al., 
1992; Franco et al., 2004; Cortesio et al., 2011).

3.2 Impairment of Ca2+homeostasis 
Calpain degradation of α-fodrin not only increases sarcolemmal 
fragility but in concert with the cleavage of ankyrin causes 
the detachment of several membrane receptors and channels 
including the α-subunit of Na+/K+ ATPase and the Na+/Ca2+ 
exchanger from their anchorage to the ankyrin-fodrin complex, 
which is essential for their proper membrane localization and 
correct function (Li et al., 1993; Mohler et al., 2003). As a 
consequence, the elevated cytosolic Na+ concentration present in 
ischemic cells cannot be normalized upon reperfusion, resulting 
in further aggravation of Ca2+ overload through reduced Ca2+ 
extrusion, following a vicious circle that aggravates reperfusion 
injury (Inserte et al., 2005; Müller et al., 2013a). In addition, 
it has been suggested that calpains may impair sarcoplasmic 
reticulum control of cytosolic Ca2+ by cleaving sarcoplasmic 
reticulum Ca2+ ATPase (SERCA2) and the ryanodine receptor 
(Singh et al., 2004b; French et al., 2006; Pedrozo et al., 2010). 

3.3 Myofibrillar derangement 
Calpains have been largely involved in post-ischemic 
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myocardial dysfunction through the proteolysis of several 
proteins involved in cell contraction. The calpain dependent 
cleavage of titin, desmin, cardiac troponin T (cTnT), cardiac 
troponin I (cTnI) and α-actinin is described in different 
experimental models of IR (Kositprapa et al., 2000; Maekawa 
et al., 2003; Zhang et al., 2006; Blunt et al., 2007; Feng et 
al., 2008; Li et al., 2009) and has been reported in human 
myocardial samples (Barta et al., 2005). Overexpression of 
calpastatin prevents the degradation of cTnI and attenuates 
contractile dysfunction in rat hearts subjected to IR (Maekawa 
et al., 2003). The regulation  of its degradation by calpain and 
the identification of the cleavage sites is being exhaustively 
investigated (Wijnker et al., 2015; Li et al., 2017; Martin-
Garrido et al., 2018; Mahmud et al., 2019). Overexpression of 
heat shock protein-27 (HSP27) has been proposed to improve 
post-ischemic contractility by preventing the proteolytic 
cleavage of cTnI, cTnT, and desmin via blockade of calpain 
interaction with these proteins (Blunt et al., 2007; Lu et al., 
2008). Cardiac myosin binding protein-C (cMyBP-C) is 
hydrolyzed by calpain during IR generating a N-terminal 
fragment (Sadayappan et al., 2008) that it is also observed in 
infarcted human hearts (Barefield et al., 2019). Recently, it has 
been reported that the cardiac-specific ablation of the calpain-
target site of CMyBP-C reduces myocardial infarction in an 
in situ IR model (Barefield et al., 2019). Junctophilin-2, an 
essential protein for efficient excitation-contraction coupling 
in adult cardiomyocytes, is reduced after transient ischemia 
leading to cardiac contractile dysfunction and heart failure due 
to the calpain-dependent cleavage of its N-terminal domain 
(Murphy et al., 2012; Guo et al., 2015). More recently, it has 

been proposed that the resulting junctophilin-2 N-terminal 
fragment translocates to the nucleus where it acts as a stress-
adaptive transcription regulator (Guo et al., 2018).

3.4 Mitochondrial dysfunction 
Although traditionally considered cytoplasmic proteases, 
different studies have reported that calpains 1, 2, 4, and 10 are 
also present in the mitochondria (Arrington et al., 2006; Chen 
et al., 2011; Shintani-Ishida and Yoshida, 2015). Mitochondrial 
calpain-1 (mCPN1) is detected in the inter-membrane space 
(Ozaki et al., 2007) and matrix (Chen and Lesnefsky, 2015), 
and mitochondrial calpain-2 (mCPN2) in the matrix of mouse 
heart mitochondria (Shintani-Ishida and Yoshida, 2015). 
Studies performed in isolated liver mitochondria suggest 
that the activity of mCPN1 and mCPN2 is regulated through 
their association to the molecular chaperones endoplasmic 
reticulum resident protein 57 (ERp57) and glucose regulated 
protein 75 (Grp75), respectively (Ozaki et al., 2008, 2009). 
Calpain activation during IR were initially involved in the 
induction of the mitochondrial-dependent apoptotic programme 
by activating the pro-apoptotic factors BH3 interacting-
domain death agonist (BID) (Chen et al., 2001; Luo et al., 
2015) and apoptosis-inducing factor (AIF) (Chen et al., 2011). 
However, the relevance of apoptotic cardiomyocyte death in 
the context of acute reperfusion injury has been questioned 
due to the repression of the canonical caspase pathway in post-
mitotic cardiomyocytes (Sanchis et al., 2008; Inserte et al., 
2016). By contrast, several recent studies have proposed that 
mitochondrial calpains alter the electron transporter chain 
function by targeting the NADH dehydrogenase [ubiquinone] 

Figure 1. Schematic diagram showing the main proposed mechanisms discussed in the text by which calpains participate in reperfusion 
injury. ETC, electron transport chain; NCX, Na+/Ca2+ exchanger; NBC, Na+/HCO3

- cotransporter; NHE, Na+/H+ exchanger; pHi, intracellular pH; 
SR, sarcoplasmic reticulum.
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iron-sulfur protein 7 (NDUFS7) (Chen et al., 2019) and 
NADH-ubiquinone oxidoreductase chain 6 protein (ND6) 
(Shintani-Ishida and Yoshida, 2015) subunits of complex I. 
Pharmacological inhibition of calpains in rats subjected to ex 
vivo and in situ transient ischemia prevented mitochondrial 
calpain activation, complex I cleavage and inactivation, and 
reduced the occurrence of mitochondria permeability transition 
pore (mPTP) (Shintani-Ishida and Yoshida, 2015; Thompson et 
al., 2016; Chen et al., 2019). Mitochondrial calpains have also 
been involved in the disruption of the mitochondrial FoF1 ATP 
synthase through the proteolysis of its ATP5A1 subunit (Ni et 
al., 2016). Recently, by using transgenic mice with upregulation 
of calpain-1 restricted to cardiomyocyte mitochondria, the same 
group has proposed that calpain-mediated cleavage of ATP5A1 
is causally associated with ROS generation, mPTP opening, and 
cell death (Cao et al., 2019).

Finally, mitochondrial calpains have been suggested to 
modulate mitochondrial dynamics. Recent findings suggest 
that impairment of mitochondrial dynamics may contribute to 
myocardial damage caused by IR (Ong et al., 2010; Forte et 
al., 2020). Cardiac-specific downregulation of OPA1 has been 
associated with mitochondrial fusion, mitophagy inhibition, 
and enhanced reperfusion injury (Zhang et al., 2019). In a 
recent study, calpastatin overexpression in mice subjected to 
in vivo transient ischemia prevented OPA1 degradation and 
mitochondrial fission, and improved mitochondrial fusion and 
mitophagy (Guan et al., 2019). Furthermore, calpain inhibition 
attenuated beclin-1 cleavage, a key component of the autophagy 
pathway required to form autophagosomes, and improved 
mitophagy in ex vivo hearts subjected to IR (Chen et al., 2019), 
suggesting that calpains negatively modulate mitophagy by 
acting at multiple levels. 

3.5 Modulation of signaling pathways 
Other known calpain substrates are protein kinases, protein 
phosphatases, and transcription factors (Neuhof, 2014). The 
calpain-dependent cleavage of these regulatory proteins may 
alter the function of several signaling pathways at different 
levels and may indirectly affect reperfusion injury. Proteolytic 
processing of protein kinase C (PKC) by calpain-1 generates 
a C-terminal fragment with unregulated kinase properties that 
contributes to reperfusion injury (Kang et al., 2010). Calpain 
activity also induces the activation of glycogen synthase 
kinase 3-beta (GSK-3β) (a well-known regulator of mPTP 
opening) through the cleavage of its inhibitory domain, while 
its inhibition upregulates the GSK-3β downstream signaling 
pathways insulin/phosphoinositide-3-kinase (PI3K) and 
WNT/β-catenin (Potz et al., 2017). Different groups have 
demonstrated that calpain activation during reperfusion induces 
the cleavage of the nuclear factor kappa B (NFκB) inhibitor 
IκBα, inducing the translocation of NFκB to the nucleus, 
where it promotes the expression of proteins involved in the 
development of adverse ventricular remodeling (Hamid et al., 
2011; Ma et al., 2012; Poncelas et al., 2017). In addition, it has 
been proposed that calpains elicit calcium-triggered cell injury 
by activating calcineurin in a calmodulin-independent form 
through the cleavage of its 60 kDa subunit (Lakshmikuttyamma 
et al., 2003) and the proteolysis of the calcineurin inhibitor 
cain/cabin1 (Kim et al., 2002). Finally, in vitro experiments 
show that purified m-calpain promotes partial degradation of 
G protein-coupled receptor kinase 2 (GRK2) and inhibits its 
activity (Lombardi et al., 2002). GRK2 is a central regulator 
of β-adrenergic receptors and many other G protein-coupled 
receptors (GPCR) involved in cardiovascular pathophysiology, 
but also a key regulatory node in non-GPCR pathways (Mayor 
et al., 2018). Recently we have reported that GRK2 levels 
are transiently reduced at the onset of reperfusion, at least in 
part due to the action of calpains, which reduced endogenous 

cardioprotection through impaired overall protein kinase B (Akt) 
functionality (Penela et al., 2019).

Highlights: A broad range of experimental studies demonstrates 
that calpain activation contributes to IR injury by different 
mechanisms including increased sarcolemmal fragility, 
impairment of Ca2+ regulation, myofibrillar derangement, 
mitochondrial dysfunction, and modulation of signaling 
pathways.

4. Pharmacological inhibition of calpains
Despite the compelling experimental evidence supporting 
the contribution of calpains to myocardial reperfusion injury, 
no clinical trials and only a few pre-clinical studies in large 
animal models have explored the use of pharmacological 
calpain inhibitors as a therapeutic strategy to attenuate 
myocardial infarction (see Table 1). This is in part due to the 
limitations of most of the available calpain inhibitors, which 
include poor selectivity (Ali et al., 2012), metabolic instability, 
limited membrane permeability, and poor water-solubility. 
The association of other non-cardiac pathological conditions, 
including myopathies, neurodegenerative disorders, ophthalmic 
diseases, or cancer with disturbances in the calpain system 
and the demonstration that transgenic models with deficient 
calpain expression or overexpression of calpastatin attenuate 
the symptoms of these pathologies (Zatz and Starling, 2005), 
make inhibition of calpains an attractive target for the industry, 
promoting active research for development of novel calpain 
inhibitors (examined in detail in previous reviews (Ono et al., 
2016; Dókus et al., 2020)). 

Leupeptin and E-64,  both natural ly isolated from 
microorganisms, constitute the first-generation of calpain 
inhibitors. These peptide aldehydes have an electrophilic center 
for a covalent interaction with the catalytic cysteine residue of 
calpain. Leupeptin was the first inhibitor tested in the context 
of IR injury, improving functional recovery in isolated guinea 
pig hearts subjected to IR (Matsumura et al., 1993). However, 
although these inhibitors have been extensively used for many 
years in in vitro and in vivo studies, they exhibit little specificity 
for calpains and low membrane permeability (Mehdi, 1991). 
The physicochemical properties of leupeptin were improved 
by substituting the terminal amino acid for a hydrophobic 
cap group (Donkor, 2011). The resulting synthetic leupeptin 
derivatives calpeptin, ALLN (calpain inhibitor I) and MDL-
28170 (calpain inhibitor III) have demonstrated an improved 
efficacy to protect against reperfusion injury in isolated hearts 
and in vivo models of transient coronary occlusion (Inserte et 
al., 2004; Mani et al., 2009; Gilchrist et al., 2010; Hernando 
et al., 2010). Nevertheless, the high chemical reactivity of 
aldehydes and poor aqueous solubility limits the stability and 
bioavailability of these compounds, therefore precluding their 
progression into the clinic. Efforts to solve these problems 
have led to the development of peptidomimetic inhibitors 
derived from the MDL-28170 structure with improved water 
solubility, cell permeability, and metabolic stability over 
previous inhibitors (Lubisch et al., 2003). Among them, the 
benzoylalanine-derived ketoamides A-705239 and A-790253 
developed by AbbVie reduced infarct size and mitochondrial 
dysfunction in isolated rabbit hearts (Neuhof et al., 2003, 2004) 
and in an in vivo pig model of IR (Khalil et al., 2005). An 
improved derivative of A-705239 namely Alicapistat (ABT-
957), with high calpain selectivity versus cathepsins (Jantos 
et al., 2019), has been recently tested in a phase I clinical 
study analysing its safety and pharmacological properties 
for the treatment of Alzheimer’s disease (Lon et al., 2019). 
However, in this study, Alicapistat failed to induce a measurable 
pharmacodynamic effect, which can be a consequence of 
selecting inadequate concentrations, suggesting that this 
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Table 1. Selected studies of calpain inhibition in ischemia/reperfusion models.

CK: creatine kinase; EDV: end-diastolic ventricular volume; EF: ejection fraction; LDH: lactate dehydrogenase; LTCC: L-type calcium channel; LVDP:left 
ventricular developed pressure; MMP: metalloproteinase; ND: NADH-ubiquinone oxidoreductase chain 6 protein; SR: sarcoplasmic reticulum; TG: 
transgenic model
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inhibitor has indeed a moderate potency. Another ketoamide 
derived inhibitor with an encouraging pharmacokinetic profile 
is SNJ-1945, produced by Senju Pharmaceutical (Shirasaki et 
al., 2006; Yoshikawa et al., 2010). Intraperitoneal administration 
of SNJ-1945 attenuated ventricular dysfunction induced by IR 
(Takeshita et al., 2013) and reduced infarct size when given 
immediately before reperfusion in in vivo rat and mouse models 
of transient coronary occlusion (Poncelas et al., 2017; Penela et 
al., 2019). Currently, a phase II clinical trial designed to test the 
efficacy and safety of oral administration of SNJ-1945 in central 
retinal artery occlusion is in progress (jRTC2021190013). The 
limited specificity for calpains over other cysteine proteases 
present in many calpain inhibitors has been attributed to 
the highly conserved active site among cysteine proteases. 
Therefore, a novel approach to develop new inhibitors with 
increased specificity for calpains is based on the use of 
compounds that induce allosteric inhibition of the enzyme by 
binding to other position than the catalytic site. One of these 
allosteric inhibitors, PD150606, which is supposed to bind to 
the Ca2+ binding site of calpain, has been demonstrated to be 
effective in attenuating myocardial infarction in mice subjected 
to in vivo IR (Luo et al., 2015). Importantly, a derivative of 
PD150606 (PD151746) has been shown to be more selective 
for calpain-1 than for calpain-2. Because the two isoforms 
may display some differences in their substrate specificity 
(Shinkai-Ouchi et al., 2016) and biological function (Santos et 
al., 2012; Wang et al., 2016), this type of compounds opens the 
door to the development of new isoform-selective inhibitors. 
In addition to calpain isoforms, differences also seem to exist 
between cytosolic and mitochondrial calpains. It has been 
proposed that mitochondrial but not cytosolic calpains bind 
to chaperons (ERp57 for calpain-1 and Grp75 for calpain-2) 
(Ozaki et al., 2011). Based on these observations, Ozaki et al. 
(2012) developed a novel peptide that blocks the binding site 
between calpain-1 and ERp57 and inhibits the mitochondrial 
activity of calpain-1 in a specific manner. Considering the 
central role of mitochondria as a trigger of cell death during IR 
injury (Davidson et al., 2020), and that mitochondrial calpain-1 
activity is increased in mice subjected to IR (Chen et al., 2011), 
the potential cardioprotective effects of these types of inhibitors 
deserve further investigation.

Highlights: Translation of the use of calpain inhibitors into 
clinical trials has been hampered due to the lack of inhibitors 
with appropriate pharmacological properties for use in patients. 
The development of new calpain inhibitors is an increasing 
research trend.

5. Perspectives
Calcium overload occurring during IR invariably results in 
aberrant activation of calpains and the concomitant cleavage 
of a wide variety of proteins. Calpain activation contributes 
to the aggravation of reperfusion injury by reducing the 
likelihood of a cell to survive. Several experimental studies 
have demonstrated in different models of IR that calpains are an 
attractive therapeutic target and that pharmacological inhibitors 
applied at the onset of reperfusion are capable of preventing cell 
death and limiting myocardial infarction. However, translation 
of the use of calpain inhibitors into clinical context has been 
frustrating, in part due to the lack of specific compounds with 
an appropriate pharmacologic profile to make them candidates 
for use in patients, but also due to the negative results obtained 
when using some promising cardioprotective interventions, 
like ischemic postconditioning (Engstrøm et al., 2017), which 
has been shown to prevent calpain activity in experimental 
studies (Inserte et al., 2009), in patients with acute coronary 
syndrome.

Fortunately, due to the involvement of calpain in other non-
cardiac pathologies, there is a high interest for the development 
of novel and specific calpain inhibitors, and plenty of 
molecules are being described in the literature and registered 
in patent offices. The safety and pharmacokinetics of some of 
the drugs that have demonstrated efficacy in animal models 
of IR are currently being tested for safety in clinical trials 
(jRTC2021190013; (Lon et al., 2019)). The 3D structure of the 
calpastatin-calpain complex has already been solved (Hanna et 
al., 2008; Moldoveanu et al., 2008) and it is being used to find 
new chemical structures that can be candidates for the design 
of new calpain inhibitors or for the optimization of the current 
compounds. One of the historical limitations of many calpain 
inhibitors is their poor selectivity over the cysteine proteases 
cathepsins (Mehdi, 1991). However, given the evidence for 
the involvement of the altered activity of both cathepsins and 
calpains in different pathophysiological conditions including 
myocardial infarction (Müller et al., 2013b), it has been 
questioned whether the design of pure specific inhibitors is 
essential for their clinical efficacy (Siklos et al., 2015). 

In addition to their role in reperfusion injury, different 
studies using transgenic models have demonstrated that 
calpains participate in the progression of adverse post-infarction 
remodeling (Ma et al., 2012; Kudo-Sakamoto et al., 2014; Ye 
et al., 2015). In two recent studies, the chronic administration 
of SNJ1945 and MDL-28170 during reperfusion was effective 
in attenuating ventricular remodeling and cardiac dysfunction 
in a mouse model of transient coronary occlusion with no 
signs of toxic effects (Poncelas et al., 2017; Wang et al., 2018). 
Overall, these promising experimental results demonstrate that 
calpain inhibition is feasible and safe and may be an effective 
therapeutic intervention to attenuate both reperfusion injury and 
the development of adverse postinfarction remodeling and heart 
failure in patients with acute myocardial infarction.

Highlights: Recent studies suggest that calpains participate 
in the progression of post-infarction remodeling. However, 
translational research involving calpains is still at the 
development stage.
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