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New therapeutic targets to prevent diastolic dysfunction in 
heart failure with preserved ejection fraction
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Heart failure with preserved ejection fraction (HFpEF) is poised to be the leading cause of heart failure in the near future. 
Currently, there are no specific therapies for improving morbidity and mortality associated with HFpEF and this has been 
attributed, in part, to its diverse etiology. One common feature, which defines HFpEF is diastolic dysfunction, a condition in 
which impaired left ventricular (LV) relaxation results in increased end-diastolic pressures and impaired blood filling. This 
manifests with signs and symptoms of congestive heart failure, despite LV systolic function being relatively preserved. Studies 
that have investigated the mechanisms underlying diastolic dysfunction have linked it to impaired cardiomyocyte relaxation 
and extracellular matrix (ECM)-related stiffening of the heart. Current treatment strategies for heart failure that target the 
sympathetic nervous system and the renin–angiotensin–aldosterone system have failed to improve prognosis in HFpEF. As 
such, there is an unmet need to identify new therapies that can directly ameliorate diastolic function and improve clinical 
outcomes in HFpEF. In order to achieve this, a comprehensive understanding of the multi-level processes that lead to diastolic 
dysfunction is required, which entail abnormal calcium handling, myofilament and cytoskeleton dysfunction, and abnormal 
ECM depositions. In this review article, we focus on the molecular mechanisms underpinning diastolic dysfunction, and also 
discuss potential therapeutic strategies for alleviating the impaired relaxation associated with HFpEF and improving clinical 
outcomes.
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Introduction 
Cardiovascular disease (CVD) is the leading cause of death in 
the world and it has been estimated that more than 22.2 million 
people will die from CVD by 2030 (Virani et al., 2020). Among 
all the risk factors, heart failure (HF) has been the fastest-
growing cause of CVD (Ziaeian et al., 2016) and accounted 
for 1 in 8 deaths in the U.S.A. in 2017 (https://www.cdc.gov/, 
2019). Normal heart contractile function is critically dependent 
on a compliant left ventricle (LV) filling during diastole, and 
contraction of the LV in systole.  HF occurs when the normal 
activity of the heart fails to pump enough blood to meet the 
demands of the body for oxygen and nutrient supply. Because of 
their mutual dependency, the impairment of either diastolic or 
systolic function can result in congestive HF. Based on the LV 
ejection fraction, HF is broadly divided into HF with reduced 

ejection fraction (HFrEF, when LVEF is < 40%), HF with mid-
range ejection fraction (when LVEF is 40-50%), and HF with 
preserved ejection fraction (HFpEF, when LVEF is > 50%)
(Ponikowski et al., 2016; Yancy et al., 2017). Epidemiology 
studies have shown that HFpEF has morbidity and mortality 
that rivals HFrEF (Yancy et al., 2017). A variety of factors 
and comorbidities are associated with the development of 
HFpEF including advanced age, female sex, obesity, systemic 
arterial hypertension, diabetes mellitus, renal dysfunction, 
sleep disorders, and chronic obstructive pulmonary disease, 
conditions that result in systemic inflammation and endothelial 
dysfunction that may trigger adverse LV remodeling and result 
in HFpEF (Butler et al., 2014; Shah et al., 2016). Unlike HFrEF, 
for which there is a growing armamentarium of pharmacological 
agents with prognostic benefit, there are no specific therapies 
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for improving clinical outcomes in patients with HFpEF. This 
likely relates to the latter’s multi-factorial etiology, and an 
incomplete understanding of the pathophysiology underlying 
HFpEF. A key feature defining HFpEF is diastolic dysfunction, 
which is characterized by increased myocardial stiffness, 
impaired LV relaxation, increased LV end-diastolic pressures, 
and impaired LV filling, the clinical manifestations of which are 
congestive HF.

HFpEF was previously known as “diastolic HF (DHF)” a 
term referring to any clinical syndrome where congestive HF 
occurs in the presence of relatively normal LV systolic function. 
However, the term “diastolic HF” does not always equate 
to HFpEF, and this often generates confusion. Firstly, many 
HFrEF patients develop diastolic dysfunction, suggesting that 
diastolic dysfunction is not an exclusive feature of HFpEF (Aziz 
et al., 2013).  Also, maintaining a normal ejection fraction does 
not necessarily mean that systolic function of HFpEF patients 
is normal. Other systolic parameters such as global longitudinal 
strain (GLS) have been shown to be compromised in HFpEF 
(Lekavich et al., 2015; Morris et al., 2014). Moreover, although 
diastolic function measurements remain the most heavily-
weighted parameters according to the latest Heart Failure 
Association-Pretest Assessment (P), Diagnostic workup with 
echocardiogram and natriuretic peptide score (E), Advanced 
workup with functional testing in case of uncertainty (F), and 
Final etiological workup (F) (HFA–PEFF) diagnostic algorithm, 
an absence of diastolic dysfunction does not necessarily exclude 
the diagnosis of HFpEF (Pieske et al., 2019). Thus, the term 
“DHF” is much less commonly used nowadays since it does 
not describe the real scope of this syndrome. Nonetheless, 
the overall majority of HFpEF patients do have diastolic 
dysfunction despite the foregoing controversies, and there is no 
evidence supporting other more predominant contributors. 

In  o rder  to  improve  HFpEF-re la ted  ou tcomes ,  a 
comprehensive understanding of the multi-level processes that 
lead to diastolic dysfunction is required. In this article, we 
review the molecular mechanisms (such as abnormal calcium 
handling, myofilament and cytoskeleton dysfunction, and 
abnormal extracellular matrix [ECM] depositions) underpinning 
diastolic dysfunction, and also discuss potential therapeutic 
strategies for alleviating the impaired relaxation associated with 
HFpEF for improved clinical outcomes.	

Myocardial relaxation and passive LV stiffness as 
determinants of diastolic function
At the beginning of diastole, the ventricles relax and 
increase their volume with a rapid drop in intraventricular 
pressure. When the pressure is lower than atrial pressure, the 
atrioventricular valves open, allowing the majority of the blood 
to transit into the ventricles from the vena cavae and pulmonary 
veins (Fig. 1). Thus, the ventricles work as a "suction pump" 
during the early phase of blood filling (Robinson et al., 
1986). After that, the subsequent atrial contraction pumps a 
relatively smaller volume of blood into the ventricles, which 
concludes diastole. Interestingly, since the heart does not 
have extensors unlike skeletal muscle, the driving force of 
behind ventricular relaxation in early diastole does not come 
from the work of contractile units. Instead, it is the recoiling 
movement powered from the elastic elements of the heart, such 
as elastin and collagen of the extracellular matrix (ECM), titin 
of cardiomyocytes, and even pericardium. During systole when 
the chambers contract against arterial load, it simultaneously 
compresses these elements, storing the elastic energy, much 
like a compressed spring. When electrical excitation is over, the 
contractile units of the cardiomyocytes stop generating force, 
the stored energy releases and powers the whole chamber to 
recoil back to the original position. 

Two key determinants of myocardial relaxation are 

cardiomyocyte contractile mechanisms and passive stiffness 
of the LV. Cardiomyocyte relaxation is an energy-consuming 
process, mediated by the calcium (Ca2+) handling system and 
the basic relaxation properties of the myofibrils. The Ca2+ 
handling system controls how fast intracellular Ca2+ is removed 
from the cytoplasm and is mainly governed by the sarcoplasmic 
reticulum Ca2+ ATPase pump (SERCA) (Maruyama et al., 
1989). Also, the relaxation of myofibrils requires the binding 
of ATP to proceed (Poggesi et al., 2005; Weber et al., 1973). 
Passive stiffness of the myocardium relates to LV compliance 
and is strongly influenced by changes in the composition of 
ECM (e.g. interstitial fibrosis), and modulation of myofibrillar 
proteins (e.g. Titin) and cytoskeleton components. Fig. 2 
summarizes the complexity of the regulatory processes 
that impact on diastolic function. This complexity possibly 
explains why HFpEF is such a heterogeneous syndrome as any 
molecular and cellular alterations on different biological levels 
could compromise diastolic function. In the following sections, 
we will focus on how these alterations impact on myocardial 
relaxation and passive stiffness, and highlight potential new 
targets for ameliorating diastolic dysfunction in HFpEF.

Calcium dysregulation and impaired cardiomyocyte 
relaxation
Calcium (Ca2+) handling plays a central role as a mediator of 
contraction and relaxation of cardiomyocytes. The sarcoplasmic 
reticulum (SR) is a subcellular membrane network that 
stores the majority of Ca2+ in cardiomyocytes. Contraction 
of cardiomyocytes relies on a process termed calcium-
induced calcium release (CICR) in which the action potential 
stimulates Ca2+ influx from L-type Ca2+ channel, which opens 
the ryanodine receptor (RyR), followed by Ca2+ release from 
SR through the RyR to activate myofibrils (Bers 2002; Fabiato 
et al., 1979). After electrical stimulation, the relaxation of 
cardiomyocytes requires removal of Ca2+ from the cytosol 
to deactivate the myofibrils and this is mainly mediated via 
SERCA. The cardiac-specific isoform SERCA2a is an integral 
SR membrane protein that has a high affinity for Ca2+ on the 
cytosolic side, and transports Ca2+ to the lumen side of the SR 
with the consumption of ATP, essentially functioning as a Ca2+ 
pump (Fig. 2).  The activity of SERCA2a is regulated by two 
smaller integral SR membrane proteins: phospholamban (PLN) 
and sarcolipin (SLN). Phospholamban serves as a SERCA2a 
inhibitor by interacting with SERCA2a and decreasing its 
affinity for Ca2+ (Akin et al., 2013; MacLennan et al., 2003). 
The activity of PLN is regulated by its phosphorylation at Ser16 
and/or Thr17, which promotes the oligomerization of PLN and 
releases its inhibition on SERCA2a (Ablorh et al., 2015; Tada et 
al., 1996). SLN is structurally similar to PLN and also inhibits 
SERCA2a function (Bhupathy et al., 2007), but acts more like 
an uncoupler between Ca2+ transport and ATP hydrolyzation 
(Shaikh et al., 2016).

Even though SERCA2a function has been linked to 
myocardial relaxation, most studies have investigated the role 
of impaired SERCA2a function in systolic HF (Hasenfuss 
et al., 1993; Houser et al., 2000; Morgan 1991). This is not 
surprising since SERCA2a not only plays a central role in Ca2+ 
removal for cardiomyocytes to relax, but also the availability 
of Ca2+ to activate myofibrils. Impaired SERCA2a activity can 
be either transcriptional or post-translational. Gene expression 
of SERCA2a has been shown to be down-regulated in end-
stage failing hearts (Arai et al., 1993; Eisner et al., 2013). Also, 
the chronic sympathetic nervous system in HF can desensitize 
β-adrenergic signaling, the downstream effect of which is 
reduced PLN phosphorylation that inhibits SERCA2a (Marks 
2013; Schmidt et al., 1999). SERCA2a is also a direct target 
of oxidative modification by increased reactive oxygen species 
(ROS) (Balderas-Villalobos et al., 2013; Viner et al., 1999; 



REVIEW ARTICLE

Conditioning Medicine 2020 | www.conditionmed.org

Conditioning Medicine | 2020, 3(3):171-183

173

Zima et al., 2006), which commonly occurs in acute myocardial 
ischemia-reperfusion injury or diabetic HF with impaired 
mitochondrial function (Zarain-Herzberg et al., 2014).

Overexpression of SERCA2a has been shown to be 
beneficial in HFrEF (Baker et al., 1998; Del Monte et al., 1999), 
and it has been demonstrated that diastolic function can also be 
improved by increasing SERCA2a function (Baker et al., 1998; 
Iwanaga et al., 2004). Several groups are now focusing on the 
role of SERCA2a in HFpEF. Groban et al. (2012) first reported 
that diastolic function was improved along with reduced PLN/
SERCA2a ratio when aging rats were treated with angiotensin 
converting enzyme inhibitor (ACE-I). This finding is consistent 
with later reports showing reduced SERCA2a activity in 
hypertensive animal models of diastolic dysfunction with 
preserved ejection fraction (Rouhana et al., 2019; Tanaka et al., 
2014). Furthermore, anti-oxidative agents have been shown to 
benefit diastolic dysfunction with a potential link to restored 
SERCA2a function (Scotcher et al., 2016; Wilder et al., 2015), 
but the mechanisms are unclear.

The sodium-calcium exchanger (NCX) is another mediator 
of Ca2+ removal during cardiomyocyte relaxation, but only 
makes a small contribution (Bassani et al., 1994; Pieske et 
al., 1999). NCX is a plasma membrane integral protein that 
uses the electrochemical gradient of sodium (Na+) to drive 
one Ca2+ ion out of the cell in exchange for 3 Na+ ions (Bers 
2002). The expression of NCX is usually increased in animal 
models of HFrEF (Bers et al., 2010), although the findings in 
human HFrEF are more inconsistent (Hasenfuss et al., 2002). 
The overall contribution of NCX for Ca2+ removal is increased 
because of reduced SERCA activity (Piacentino III et al., 2003).
NCX appears to act differently in HFpEF. In the hypertensive 
animal, Rouhana et al. (2019) established that NCX activity is 
decreased along with SERCA2a, suggesting it might be another 
contributor to elevated diastolic [Ca2+], which potentially leads 
to relaxation impairment. In some end-stage HFrEF hearts, the 
activity of NCX is limited because extra Na+ efflux results in 

reversed Ca2+ extrusion, which does not happen in HFpEF (Nuss 
et al., 1992). 

Therapeutic targeting of SERCA2a in HFpEF
Given the beneficial roles of SERCA2a in both systolic and 
diastolic function in animal models, clinical trials have tested 
the upregulation of SERCA2a as a therapeutic strategy for HF. 
The “Calcium Upregulation by Percutaneous Administration of 
Gene Therapy in Cardiac Disease (CUPID)” trial demonstrated 
that adeno-associated virus serotype 1-delivered SERCA2a 
gene (AAV1/SERCA2a) therapy in HFrEF patients reduced the 
rate of re-hospitalization for HF (Hajjar et al., 2008; Jaski et 
al., 2009). Despite these promising results, the follow-up larger 
phase 2b CUPID2 trial failed to show any benefit (Fernández-
Ruiz 2016; Greenberg 2017). The failure of SERCA2a gene 
therapy has been attributed to the potential effects of B-type 
natriuretic peptide (BNP) on SERCA2a expression (Zhai et al., 
2018), and it has been suggested that  SERCA2a gene therapy 
may be  beneficial in HFpEF where BNP levels tend to be lower 
than in HFrEF. The funny (If) channel inhibitor, ivabradine, has 
been reported in a small clinical trial of 61 patients to improve 
exercise capacity, LV filling pressures, and diastolic function 
of HFpEF patients (Kosmala et al., 2013). Although the main 
action of ivabradine is to reduce heart rate, it is also known to 
be a SERCA2a activator (Reil et al., 2013; Xie et al., 2020), 
supporting a beneficial role of SERCA2a in HFpEF. However, 
the larger “Preserved Left Ventricular Ejection Fraction Chronic 
Heart Failure With Ivabradine Study (EDIFY)” trial failed to 
demonstrate improved diastolic function with ivabradine in 
HFpEF patients (Komajda et al., 2017). Istaroxime is another 
activator of SERCA2a that acts by blocking the SERCA2a–
PLN interaction (Huang 2013). It has been tested in the 
Hemodynamic Effects of Istaroxime in Patients with Worsening 
HF and Reduced LV Systolic Function (HORIZON-HF) trial 
in HFrEF patients (Shah et al., 2009), and was shown to lower 
pulmonary capillary wedge pressure (PCWP) and improve 

Figure 1. Wiggers diagram and cardiac cycle. (1) Isovolumetric contraction: closure of atrioventricular (AV) valves with rapid rise of 
intraventricular pressure without volume change; (2) Ejection: intraventricular pressure surpasses aortic pressure and opens aortic valves. 
Rapid blood outflow from the ventricle to aorta followed by slowing down of outflow because of the turning-off of contractile units; (3) 
Isovolumetric relaxation: intraventricular pressure becomes lower than aortic pressure. AV valves close with rapid decrease in intraventricular 
pressure without volume change; (4) Atrial filling: start of blood filling into atrial with AV valves closed; (5) Intraventricular pressure becomes 
lower than atrial pressure. AV valves open and blood filling into the ventricle (E or early wave); (6) Ending of diastole with atrial contraction to 
eject smaller amount of blood into the ventricle (A or atrial wave).
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diastolic function, effects that might benefit HFpEF. A clinical 
trial with this agent is currently ongoing in HFpEF patients 
(clinicaltrials.gov, NCT02772068).

Myofilament dysfunction and impaired cardiomyocyte 
relaxation
Myofibrils are the most abundant organelle and are the 
basic contractile unit of the cardiomyocytes (Gerdes 2012). 
Contraction and relaxation are mediated by alternating sliding 
actions between the thin and thick filaments toward or away 
from the M-band (Huxley 1957). The thin filament is composed 
of filamentous sarcomeric α-actin with regulatory proteins 
troponin complex (Tn) and tropomyosin (Tm). The thick 
filament consists of myosin heavy chains (MHC), regulatory 
myosin light chains (RLC), essential myosin light chain (ELC), 
and myosin binding protein C (MyBP-C). The protruding 
globular region of MHC, termed cross-bridge, can interact 
with actin using ATP to generate force to pull the thin filament 
towards the center of the sarcomere (Weber et al., 1973). 
Myofibril function is tightly coupled with intracellular Ca2+ 
signaling. During contraction, elevated [Ca2+] from SR propels 
Ca2+ to bind to TnC. This results in conformational changes 
in the troponin complex and releases the allosteric inhibition 
of Tm, allowing the cross-bridges to interact with actin and 
generate force (Fig. 2). During relaxation, Ca2+ is removed by 
SERCA2a and NCX, the interaction of cross-bridges to actin 
arrests, thereby allowing the sarcomere to slide back into the 
relaxed state (Ebashi et al., 1968; Gordon et al., 2000; Lin et al., 
2019). 

At the myofibril level, cardiomyocyte relaxation can be 
modulated via two distinct pathways, Ca2+ sensitivity and 
relaxation properties of the myofibril itself. Ca2+ sensitivity 
refers to how readily the myofibrils are activated by Ca2+. 
During cardiomyocyte relaxation, Ca2+ sensitivity of the 
myofibrils determines the rate of relaxation of the myofibrils. 
As for myofibril relaxation, it is important to appreciate the 
distinction between “relaxation of cardiomyocytes” and 
“relaxation of myofibrils.” The inactivation of myofibrils begins 
when dissociation of Ca2+ turns off cross-bridges. The pure 
relaxation kinetics of the myofibrils after Ca2+ removal has a 
unique “bi-phasic” pattern – linear phase and exponential phase 
of relaxation (Stehle et al., 2002; Tesi et al., 2002), a finding 
which is not observed in cardiomyocyte relaxation. The reason 
for this is that cell relaxation is the combination of Ca2+ handling 
and myofibril relaxation processes, and the fall of cytosolic 
[Ca2+] is a much more gradual process than myofibrils (Backx 
et al., 1995; Blinks et al., 1978). In many cases, alterations in 
general myofibril relaxation kinetics can translate to the whole-
cell level as several recent studies have demonstrated (Coppini 
et al., 2017; Jeong et al., 2018; Lin et al., 2020).  However, 
the different phases of relaxation from the myofibril study 
can provide further insights into the potential molecular basis 
of these abnormalities. For example, the investigation of the 
impaired linear phase relaxation should focus on how the thin 
filament is inactivated by the action of the Tn complex, whereas 
the impaired exponential phase of relaxation is more relevant 
to the cross-bridge cycling between the thin and thick filaments 
and the elastic properties of the myofibrils provided by titin (Lin 
et al., 2019; Stehle et al., 2009). Titin is the third major structure 
of the myofibrils. In contrast to the thin and thick filaments, 
titin does not have a contractile function but is the main player 
that mediates passive stiffness of the myofibrils (Granzier et 
al., 2002). Alterations of sarcomere proteins can directly affect 
stiffness and relaxation of the cardiomyocytes and potentially 
result in HFpEF.

Therapeutic targeting of titin in HFpEF
Titin is the largest human protein (35,000 amino acids in 

length), as evidenced by the length of one single titin molecule 
spanning from the Z disc to the central M line. Titin provides 
structural support and elasticity of the myofibrils, a property 
that can directly translate to passive stiffness at the whole heart 
level (Chung et al., 2011). Because of its extreme length, titin 
comprises many different structural elements (LeWinter et al., 
2010), and goes through a series of alternative splicing during 
development (Guo et al., 2010). The shorter and stiffer N2B 
isoform is the predominant isoform in the mature human heart 
in contrast to the longer and more compliant N2BA isoform 
(Warren et al., 2004). Another determinant of titin stiffness 
are post-translational modifications (PTMs) of amino acids 
located in its key structural elements, many of which have 
been characterized: (1) Decreased stiffness by phosphorylation 
at Ser4010 and/or Ser4099 of the N2B unique sequence 
(N2Bus) by protein kinase A and G (PKA and PKG) (Borbély 
et al., 2009; Krüger et al., 2009); (2) Increased stiffness by 
phosphorylation at Ser11878 and/or Ser12022 of the PEVK 
(Pro-Glu-Val-Lys) domain by protein kinase C alpha (PKCα) 
(Hidalgo et al., 2009); (3) Increased stiffness by disulfide bond 
formation at 6 cysteine residues in N2Bus (Grützner et al., 
2009); and (4) Decreased stiffness by S-glutathionylation at 
the cryptic cysteines located in immunoglobulin (Ig) domains 
(Alegre-Cebollada et al., 2014).

The ratio of N2B/N2BA isoforms has long been shown to be 
altered in pathological conditions in response to stress (Neagoe 
et al., 2002; Wu et al., 2002). In 2006, van Heerebeek et al. 
(2006) compared the stiffness and N2B/N2BA ratio between 
heart tissues from HFrEF and HFpEF patients and found HFpEF 
patients had higher N2B expression than HFrEF patients, but 
it was later found that N2B/N2BA ratio is unchanged when 
HFpEF hearts are compared to non-failing hearts (Hopf et al., 
2018; Zile et al., 2015). Instead, Hamdani et al. (2013) used a 
mouse HFpEF model stimulated by a combination of metabolic 
dysfunction and high fat diet, and found the N2Bus region of 
titin to be hypophosphorylated, which was accompanied by 
diastolic dysfunction and increased titin stiffness, and this could 
be ameliorated by activated PKG signaling (Hamdani et al., 
2014). These results were confirmed by Zile et al. (2015) using 
heart tissues from HFpEF patients. The nitric oxide (NO)/cyclic 
GMP/PKG pathway is known to be impaired with increased 
oxidative stress (Kasner et al., 2011; Park et al., 2018), likely 
explaining why increased stiffness is the signature feature of 
HFpEF observed in diabetic cardiomyopathy (van Heerebeek 
et al., 2009). In contrast, reports from phosphorylation in the 
PEVK region of titin in HFpEF hearts have been inconsistent 
(Hamdani et al., 2013; Hopf et al., 2018). 

Other strategies that have been tested in the experimental 
setting to reduce titin stiffness include: (1) exercise, which was 
shown to reduces titin stiffness and improve diastolic function 
in a mouse model of HFpEF (Slater et al., 2017), although the 
mechanism was not addressed; (2) Metformin, a commonly 
used diabetic drug, was shown to reduce titin stiffness and 
improve diastolic function via PKA phosphorylation in the 
N2Bus region of titin (Slater et al., 2019). This result is 
consistent with an earlier study using another antidiabetic drug 
empagliflozin (SGLT2 inhibitor) on ventricular trabeculae 
from HF patients although no explanation for the underlying 
mechanism was provided (Pabel et al., 2018). However, one 
can speculate that amelioration of metabolic dysfunction is 
beneficial to titin stiffness-regulated diastolic function; and 
(3) RNA binding motif 20 (RBM20), the known regulator that 
switches titin isoforms by alternative splicing to the stiffer 
N2B isoform has been investigated as a therapeutic target for 
improving diastolic function (Guo et al., 2012).  In animal 
studies, cardiac-specific RBM20 knockout mice were shown to 
have much more compliant myofibrils, ventricle chamber, and 
improved diastolic function in response to HFpEF (Methawasin 
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et al., 2016). Based on the promising experimental results 
showing that PKG phosphorylation of the titin N2Bus region 
could improve diastolic dysfunction, the RELAX trial was 
performed using the phosphodiesterase 5 inhibitor, sildenafil, 
which can enhance PKG activity, but six months treatment 
with sildenafil did not improve exercise capacity or clinical 
status (Redfield et al., 2013). The above new findings shed light 
on using titin as a potential therapeutic target to improve the 
compliancy of the HFpEF heart despite earlier failure of the 
RELAX trial.

Alterations in myofibri l  mechanics and impaired 
cardiomyocyte relaxation
The cardiac troponin complex (cTn) directly regulates the 
response of the thin filament to Ca2+ and impacts on myofibril 
relaxation (Gordon et al., 2000). Failure to efficiently turn off 
cTn leads to enhanced Ca2+ sensitivity and prolonged relaxation 
(Chung et al., 2016). Thus, it is not surprising that the inhibitory 
cardiac troponin I subunit (cTnI) was among the earliest 
proteins identified in inherited restrictive cardiomyopathies 
(RCM) (Gomes et al., 2005; Mogensen et al., 2003), the class 
of cardiomyopathy known to result from relaxation impairment 
without showing systolic dysfunction. cTnI mutations can 
be also seen in some hypertrophic cardiomyopathy (HCM) 
patients, whose pathological phenotypes sometimes show 
prolonged relaxation as well. In HCM and RCM heart tissues, 
Ca2+ sensitivity is generally elevated accompanied by prolonged 
myofibril relaxation kinetics (Cheng et al., 2015; Iorga et 

al., 2008; Kruger et al., 2005), with occasional exceptions 
(Dvornikov et al., 2016). cTnI can be phosphorylated by several 
protein kinases (Solaro et al., 2013), the most well-known 
of which is PKA. PKA-phosphorylated cTnI reduces Ca2+ 
sensitivity and is beneficial for relaxation (Cheng et al., 2015; 
Zhang et al., 1995). Recently, Lin et al. (2020) reported that 
acetylation-mimic mutations in the actin-binding region of cTnI 
leads to reduced Ca2+ sensitivity and faster relaxation at both 
the cellular and myofibril levels in a PKA-independent manner, 
but the effect on the whole heart was not addressed. 

In addition to the regulatory system of the thin filament, 
the kinetics of force-generating myosin cross-bridges can also 
modulate Ca2+ sensitivity and myofibril relaxation (Robinson 
et al., 2002). Myosin RLC and ELC are a pair of myosin light 
chains located in the neck of the myosin head. In two RCM 
models, mutations in RLC and ELC increased Ca2+ sensitivity 
and diastolic dysfunction of the heart (Abraham et al., 2009; 
Yuan et al., 2017). Also, phosphorylation of RLC results in 
increased Ca2+ sensitivity and delayed relaxation (Colson et al., 
2010; Sevrieva et al., 2020). Cardiac specific MyBP-C3 is a 
thick filament-associated protein that controls the interactions 
between the myosin S2 domain and α-actin. Ablation of 
MyBP-C3 has been shown to result in increased Ca2+ sensitivity 
and faster relaxation because of accelerated cross-bridge 
kinetics (Moss et al., 2015). Phosphorylation of MyBP-C3 also 
speeds up relaxation, which alleviates diastolic dysfunction 
in an aging mouse model (Rosas et al., 2015; Rosas et al., 
2019). Despite these interesting results showing that the thick 

Figure 2. Determinants of myocardium relaxation. Diastolic function of the heart is governed by the stiffness of the myocardium as well as the 
relaxation action of the contractile unit. Extracellular regulation (top panel): the composition of extracellular matrix mediates the stiffness of 
the non-contractile elements of the myocardium. Amyloidosis is another extracellular cause of myocardial stiffening. Intracellular regulation 
(lower panel): muscle relaxation property is mediated by the calcium handling system of the cardiomyocyte or the basic contractile/relaxation 
properties of the myofibrils. Stiffness of cardiomyocyte is mainly mediated by giant protein titin.
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filament proteins could be closely linked to muscle relaxation 
and diastolic dysfunction, detailed myofibril mechanics of 
these alterations are still not fully understood and need further 
investigation. 

Therapeutic targeting of the contractile apparatus to improve 
myofibril relaxation in HFpEF
A number of pharmacologic interventions for improving 
maladaptive contractile function of the myofibrils in HFrEF 
have been investigated (Bristow 2000; McMurray et al., 2014; 
Teerlink et al., 2016). There are several challenges associated 
with targeting myofibrils to improve diastolic function in 
HFpEF. The onset of HFrEF, which mainly results from 
reduced contractility, can be targeted by pharmacological 
agents to either improve contractility of the myofibrils or 
decrease the afterload of the heart. In contrast, HFpEF is more 
complex and is characterized by passive stiffening and impaired 
cardiomyocyte relaxation. Furthermore, the mechanisms 
underlying the relaxation impairment of the myofibrils is 
difficult to dissect from disturbed calcium handling at the level 
of cardiomyocyte. 

With advances in cellular or ex vivo myofibril mechanics 
system, it is now possible to decipher the contribution 
of myofibril mechanics to the development of diastolic 
dysfunction in HFpEF. Jeong et al. (2018) have investigated 
myofibril mechanics of explanted LV tissue from two patients 
diagnosed as idiopathic RCM with symptoms of HFpEF. 
They found prolonged myofibril relaxation compared to 
control donors as seen in two small animal models of diastolic 
dysfunction and preserved EF. Interestingly, the diastolic 
dysfunction as well as myofibril relaxation were improved 
by the pan-histone deacetylase (HDAC) inhibitor givinostat  
(Jeong et al., 2018). This was the first evidence showing 
that relaxation at the myofibril level could be improved by a 
pharmacological intervention. Recently, Wallner et al. (2020) 
treated a feline model of HFpEF with another pan-HDAC 
inhibitor, suberoylanilide hydroxamic acid, and observed 
similar results. With the advancement of techniques, it is now 
feasible to assess the mechanical properties of myofibrils from 
cardiomyocytes derived from human induced pluripotent stems 
cells (hiPSCs) (Pioner et al., 2020; Pioner et al., 2016) or living 
human heart tissue culture (Ou et al., 2019). Whether human 
myofibrils with relaxation impairment in HFpEF patients can 
be corrected by HDAC inhibition remains to be determined. 
A recent publication from Wu et al. (2019) assessed three 
different hiPSC-derived cardiomyocytes (CM) from inherited 
diastolic HF patients with myofibrillar protein mutations, and 
found enhanced Ca2+ sensitivity and slower relaxation in all of 
them. Despite no direct mechanism for their finding, this shows 
iPSC-CMs could be an ideal tool for drug screening in the near 
future. 

The cytoskeleton and cardiomyocyte relaxation
Microtubule and intermediate filament desmin
A microtubule (MT) is composed of α/β tubulin heterodimers 
that polymerize to form a hollow tubes-shaped cytoskeleton 
about 25 nm in diameter (Stephens et al., 1976). The role of 
MTs in cardiomyocytes and how they mediate mechanical 
function has been overshadowed by the myofilament system 
for years. In 2016, it was unveiled by the Prosser Lab that 
MTs can mechanically couple to the sarcomere and provide 
resistance, acting like a spring that deforms into sinusoidal 
buckles during cardiomyocyte contraction (Robison et al., 
2016). This “buckling” action requires the detyrosination (dTyr) 
of α-tubulin and the presence of intermediate filament desmin. 
Down-regulation of dTyr or desmin substantially reduced 
stiffness of the entire cardiomyocyte (Granzier et al., 1995). 
Follow-up studies from the same group demonstrated that 

detyrosination of MTs is increased in human cardiomyocytes 
isolated from HFpEF patients and can be relieved by adenoviral 
overexpression of tubulin tyrosine ligase (TTL) or the knock-
down of a newly identified α-tubulin detyrosinase vasohibin-
small vasohibin binding protein (Caporizzo et al., 2020; Chen et 
al., 2018; Chen et al., 2020). However, there are two issues that 
need to be addressed before MT-based stiffness correction can 
be considered a therapeutic option: (1) Despite promising data 
from human cardiomyocytes, it remains to be shown whether 
detyrosination of the MTs can be demonstrated in an in vivo 
system; (2) Pharmacological agents that can specifically target 
detyrosination at the level of MTs are needed. Nonetheless, the 
breakthrough finding of MT-regulated cardiomyocyte stiffness 
has offered a novel therapeutic target for the treatment of 
HFpEF. 

Filamin C
Filamins are a family of large cytoskeletal proteins that organize 
filamentous actin (f-actin) into networks and also anchor various 
plasma membrane integral proteins to the actin cytoskeleton 
to provide a scaffold for a variety of cytoplasmic signaling 
pathways (Stossel et al., 2001). Filamin C is the muscle-specific 
filamin that modulates actin dynamics and plays an important 
role in myofibrillogenesis (Chiang et al., 2000). Filamin C 
deficiency in mice is lethal at birth due to underdeveloped 
skeletal muscles and respiratory system failure (Dalkilic et al., 
2006). In matured cardiomyocytes, filamin C acts as a signaling 
hub to repair damaged myofibrils (Leber et al., 2016). Filamin 
C has high expression in the heart and is one of the major non-
myofibrillar proteins that could result in cardiomyopathies. 
Recently, it was found that missense mutations of filamin 
C leads to RCM and HCM (Brodehl et al., 2016; Gómez et 
al., 2017), which tend to develop diastolic dysfunction and 
HFpEF (Seferović et al., 2019). The mechanism through 
which abnormal filamin C causes these phenotypes is unclear. 
However, histological staining of RCM heart tissue from 
filamin C mutation showed cytoplasmic aggregates formed by 
mutant filamin (Brodehl et al., 2016). The authors speculated 
that protein aggregates could increase cellular stiffness and 
relaxation properties (Plodinec et al., 2011), which may 
explain the restrictive phenotype. Further identification of the 
molecular causes underlying HCM/RCM is required to get a 
better understanding for gene-specific diagnosis and potential 
therapy.

Extracellular matrix and stiffening of the myocardium
Myocardial fibrosis in HFpEF 
Fibrosis is defined as the abnormal deposition of ECM in tissues 
via a cascade of cellular responses to injuries. It commonly 
begins as an adaptive response but ultimately progresses into 
cellular dysfunction (Rockey et al., 2015). Myocardial fibrosis 
is the hallmark of detrimental adaptation of the heart that 
likely progresses to HF. It is a well-known feature of HFrEF 
after myocardial infarction and results from replacement of 
dead cardiomyocytes, which eventually contributes to systolic 
dysfunction because of impaired myocardial force transduction 
or increased workload of the remaining cardiomyocytes 
(Baicu et al., 2003; Heineke et al., 2006). HFpEF has been 
previously reported to have a similar collagen level as HFrEF 
(Borbély et al., 2005; van Heerebeek et al., 2006). Since one 
of the features of abnormal ECM deposition during fibrosis is 
increased stiffness of organs including the heart (Norton et al., 
1997; Yamamoto et al., 2002), it was frequently speculated that 
a stiffened myocardium is the cause of diastolic dysfunction 
in HFpEF. The major cause of myocardial fibrosis of HFpEF 
is the inflammatory responses driven by comorbidities such 
as hypertension, coronary microvascular disease, or metabolic 
dysfunction (Friebel et al., 2019; Glezeva et al., 2014; Paulus 
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et al., 2013). For example, chronic  hypertension commonly 
leads to endothelial damage and vascular inflammation, 
thereby triggering the differentiation of circulating monocytes 
into macrophages, which secretes pro-fibrotic factors such as 
transforming growth factor-β (TGF-β), and eventually leads 
to fibrosis (Mouton et al., 2020). Some studies reported the 
elevated stiffness induced by fibrosis was directly linked to 
diastolic dysfunction in animal HFpEF models (Cieslik et al., 
2011; Martos et al., 2007) and HFpEF patients (Rommel et al., 
2016; Su et al., 2014). Recently, HFpEF has been shown to have 
more collagen volume than HFrEF (Dai et al., 2012; Echegaray 
et al., 2017), and a different spectrum of ECM composition 
that results in higher stiffness (Bielecka-Dabrowa et al., 2016; 
Kasner et al., 2011). This could explain why the myocardium 
of HFpEF typically has higher stiffness than HFrEF and worse 
diastolic function (Aziz et al., 2013; Røe et al., 2017).

Amyloidosis is a common disease in the elderly that occurs 
when insoluble misfolded proteins deposit in tissues and 
organs (Dubrey et al., 2011). Amyloidosis is different from 
fibrosis as the origin of amyloid is from proteins arranged into 
a fibril like structure instead of ECM. In the heart, amyloidosis 
results in stiffening of the heart chamber, which results in 
diastolic dysfunction (Bhupathi et al., 2011; Pislaru et al., 
2019), and is frequently present (5-13%) in patients diagnosed 
with HFpEF (González-López et al., 2015). There are several 
types of amyloidosis derived from different proteins such 
as immunoglobulin light and heavy chain (AL and AH) or 
transthyretin (ATTR) triggered from totally different etiologies 
(Kholova et al., 2005). Hearts with amyloidosis might have 
higher fibrosis, which is likely linked to inflammatory responses 
(Buxbaum et al., 2012; Mohammed et al., 2014), but they do 
not seem to have a direct correlation. 

Therapeutic targeting of fibrosis to improve myocardial 
relaxation
The common end point of myocardial fibrosis is the activation 
of cardiac fibroblasts when TGF-β binds to its receptor and 
initiates signaling pathways (Bujak et al., 2007). This leads 
to the nuclear import of Smad2/3 to prime pro-fibrotic genes 
(Khalil et al., 2017). The activation of fibroblasts plays pivotal 
roles in the secretion of major ECM materials such as collagen, 
fibrin, fibronectin, proteoglycans, and glycosaminoglycans 
(Tracy et al., 2016). The anti-fibrotic compound, pirfenidone, 
blocks the transport of Smad2/3 by inhibiting p38-γ (Dosanjh 
2007) and has been shown to ameliorate myocardium fibrosis in 
two rodent models of diastolic dysfunction (Miric et al., 2001; 
Mirkovic et al., 2002). In HFpEF, the clinical trial “PIROUETTE 
(Efficacy and Safety of Pirfenidone in Patients With Heart 
Failure and Preserved Left Ventricular Ejection Fraction)” 
is ongoing to test the efficacy and safety of pirfenidone to 
treat HFpEF patients with evidence of myocardial fibrosis 
(clinicaltrials.gov, NCT02932566). Advanced glycation 
endproducts (AGE) are the products of glycated proteins or 
lipids that can crosslink and act as another major determinant 
of the stiffness of ECM (Hartog et al., 2007). Increased AGE 
crosslinking has been found in HFpEF patients (Kasner et al., 
2011; Willemsen et al., 2012). Several studies in diabetic animal 
models have shown improvement of diastolic function when 
AGE crosslinking is blunted (Kranstuber et al., 2012; Ma et al., 
2009). Earlier in 2005, a small, open-label trial also showed 
an AGE crosslinking breaker, ALT-711, improved diastolic 
function in aging patients (Little et al., 2005), suggesting a 
potential approach for treatment. In general, fibrosis exists in 
virtually all organs in the body with complex dynamics and 
large numbers of players, thus, it is challenging to focus on 
specific pathways to treat fibrosis. Recently, high throughput 
screening for synthetic or natural compounds has been applied 
to search for more potent therapeutics for cardiac fibrosis 

(Palano et al., 2020; Schimmel et al., 2020).  However,  there 
is still a void between basic science and clinical application in 
most studies to date. 

Future perspective and conclusion
Among all HF patients, approximately 50% of them are 
diagnosed to have HFpEF (Dunlay et al., 2017). Furthermore, 
the prevalence of HFpEF relative to HFrEF is increasing 
with the majority being > 65 years old (Gerber et al., 2015; 
Steinberg et al., 2012). With the increasing trend of an aging 
population, HFpEF is projected to be the most common form 
of HF (Ambrosy et al., 2014). Unfortunately, despite abundant 
research efforts on HFpEF, its morbidity and mortality are still 
rising (Ponikowski et al., 2016; Yancy et al., 2017) without 
pharmacological therapy showing similar benefits as in HFrEF 
(Ponikowski et al., 2016; Roh et al., 2017). This is most likely 
due to the multifactorial pathophysiology that involves not 
only diastolic dysfunction but also perturbations in non-cardiac 
factors such as pulmonary and systemic vascular systems and 
renal function (Lam et al., 2018). This heterogeneity is not 
surprising given the definition of HFpEF comes from the mix 
of HF patients that do not have a single symptom (reduced EF). 
Thus, HFpEF can essentially be regarded as many different 
diseases based on this notion.

Despite the heterogeneity of HFpEF, it is possible to 
extrapolate common features of HFpEF and assess how they 
are initiated in response to the pathological stimulus. The 
most recent example is a “bona fide” HFpEF murine model 
developed by the Hill Lab (Schiattarella et al., 2019), in which 
they described a defective unfolded protein response (UPR), 
which involves reduced inositol-requiring enzyme 1 alpha-
X-box binding protein signaling that is not seen in other 
HFpEF models that only represent a transitional state between 
normal condition and HFrEF. Interestingly, Schiattarella et 
al. (2019) demonstrated defective relaxation properties at the 
cardiomyocyte level without a mechanism described in the 
same report. Based on our perspective introduced in this review, 
these cardiomyocytes may have (1) impaired Ca2+ handling 
system, (2) increased cell stiffness, or (3) prolonged myofibril 
relaxation. Potentially, with further investigation of both 
Ca2+ signaling of cardiomyocytes and mechanics of isolated 
myofibrils, researchers could determine which mechanisms are 
involved and develop a therapeutic strategy for HFpEF. If no 
abnormalities are observed at the level of the cardiomyocyte 
or the myofibril, the most likely contributor of diastolic 
dysfunction could be alterations in ECM such as altered ECM 
deposition or amyloid infiltration. With the advancement of 
technologies it is now feasible to specifically assess detailed 
ECM protein expression (Barallobre-Barreiro et al., 2016; Cui 
et al., 2019) and detailed stiffness/elastic properties of heart 
tissues (Borin et al., 2018), with experimental systems allowing 
for the analysis of cellular and myofibril mechanics (Lin et al., 
2019; Sala et al., 2018). 

There are many clinical trials targeting the sympathetic 
nervous system (SNS) and renin–angiotensin–aldosterone 
system (RAAS) to indirectly ameliorate heart function in HFrEF 
(Brann et al., 2019; Pellicori et al., 2020), but new therapeutic 
targets are necessary to directly improve diastolic function 
in HFpEF patients. It is important to focus on the detailed 
mechanisms leading to the diastolic dysfunction of the heart, 
including stiffness and active relaxation of the myocardium, 
cardiomyocyte, and myofibril. Current therapeutic approaches 
that ameliorate the stiffness of the myocardium have focused 
on targeting fibrosis and titin. Emerging fields such as tubulin 
detyrosination and filamin C also provide promising targets 
for further investigation. In contrast, treatments to improve 
muscle relaxation either through calcium handling or sarcomere 
function are mostly still preliminary, but have great potential 
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to unveil more targets for clinical application. Knowledge 
obtained from these studies could help in the identification 
of new targets and discovery of new therapeutic strategies to 
ameliorate diastolic function and improve clinical outcomes in 
patients with HFpEF.
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