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Biological aging occurs concomitantly with chronological aging and is commonly burdened by the development of age-
related conditions, such as neurodegenerative, cardiovascular, and a myriad of metabolic diseases. With a current global 
shift in disease epidemiology associated with aging and the resultant social, economic, and healthcare burdens faced by 
many countries, the need to achieve successful aging has fueled efforts to address this problem. Aging is a complex biological 
phenomenon that has confounded much of the historical research effort to understand it, with still limited knowledge of the 
underlying molecular mechanisms. Interestingly, dietary restriction (DR) is one intervention that produces anti-aging effects 
from simple organisms to mammals. Research into DR has revealed robust systemic effects that can result in attenuation 
of age-related diseases via a myriad of molecular mechanisms. Given that numerous age-associated diseases are often 
polygenic and affect individuals differently, it is possible that they are confounded by interactions between environmental 
influences and the genome, a process termed ‘epigenetics’. In part one of the review, we summarize the different variants of 
DR regimens and their corresponding mechanism(s) and resultant effects, as well as in-depth analysis of current knowledge of 
the epigenetic landscape.
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1.0 Introduction 
Over recent decades, human life expectancy has improved 
significantly due to better medical care, hygiene, food 
abundance, and lower child mortality rate (Zheng et al., 2014; 
Brown, 2015; Crimmins, 2015; Lang and Rupprecht, 2019). 
However, an increase in the length of an individual’s life may 
not correspondingly result in added quality. Indeed, poor aging 
occurs when an increase in the number of years of survival is 
accompanied by the development of age-related conditions, 
such as cardiovascular, neurodegenerative, as well as metabolic 
diseases. Such a shift in global disease epidemiology associated 
with aging is now resulting in an increasing worldwide 
prevalence of disability, and is a burgeoning concern for many 
countries facing associated healthcare, social, and economic 
burdens (Niccoli and Partridge, 2012; Jaul and Barron, 2017; 
Franceschi et al., 2018; Kehler, 2019). As such, the ideal 
paradigm of achieving successful aging by reaching old age 
in good health has fuelled research into new approaches to 
ameliorate the development and manifestation of age-related 

diseases (Katz and Calasanti, 2015; Tesch-Römer and Wahl, 
2017). Nevertheless, the complexity of the biological process 
of aging is such that our understanding of the underlying 
molecular mechanisms remains poor and so interventional 
strategies to improve lifespan and counter the development of 
age-associated diseases have been limited. 

People around the globe have practiced voluntary abstinence 
from food since antiquity, including among many religious 
groups such as Buddhists, Hindus, Jews, Muslims, and 
Christians, where restriction of food practice is incorporated 
into traditions and rituals (Ri et al., 2012). Despite such 
prevalent observation of these practices in these groups, the 
effects energy restriction has on the human body remains quite 
poorly understood. It has been recently proposed that energy 
restriction could exert an evolutionary influence whereby our 
early ancestors were often challenged with extended periods 
of food restriction due to famine, and so procurement of food 
was accompanied by considerable physical activity. Thus, 
the fundamental needs for survival in terms of physical and 



REVIEW ARTICLE

Conditioning Medicine 2019 | www.conditionmed.org

Conditioning Medicine | 2019, 2(6):284-299

285

mental maintenance without the consumption of food for 
extended periods may have shaped physiological, behavioural, 
and cognitive adaptations that have been inherited by modern 
humans in our genetic framework. Indeed, the current relative 
abundance of food coupled with our sedentary modern lifestyle, 
may be poorly compatible with the programmed genetic activity 
we have inherited. This may disrupt biochemical processes 
within the body, leading to biochemical derangements and 
ultimately contributing to the manifestation of a myriad of age-
related diseases (Chakravarthy and Booth, 2004; Martin et al., 
2010; Bake et al., 2014; Mattson et al., 2014, 2018; Lanktree 
and Hegele, 2017; Wayhart and Lawson, 2017) (Figure 1a). 
Indeed, extensive literature has shown unrestricted excessive 
energy intake provides the impetus for the development of 
age-related diseases (Uauy and Díaz, 2005). However, it is 
naïve to posit that starvation is a key to reverse the onset and 
development of chronic diseases because a balanced diet is 
critical for the proper maintenance of healthy physiological 
and metabolic functions, and individuals experiencing 
undernutrition often suffer from numerous health problems 
(Andersson and Bryngelsson, 2007; Skerrett and Willett, 2010). 
Interestingly, adoption of a dietary restriction (DR) regimen 
has garnered recent popularity, and it is indeed possible to 
voluntarily abstain from certain or total nutrients without 
compromising nutritional intake or energy balance. DR can 
promote beneficial effects on health and longevity, consistent 
with a potential for attenuation of age-related diseases through 
various molecular mechanisms (Harvey-Berino, 1999; Koubova 
and Guarente, 2003; Rogina and Helfand, 2004; Fontana et al., 
2004; Guarente and Picard, 2005; Qin et al., 2006; Haigis and 
Guarente, 2006; John R.Giudicessi, BA.Michael J.Ackerman., 
2008; Larson-meyer et al., 2009; Cruzen and Colman, 2009; 
Qiu et al., 2010b; Duan and A. Ross, 2010; Manzanero et al., 
2011; Bake et al., 2014; Colman et al., 2014; Olivo-Marston et 
al., 2014; Pifferi et al., 2018; Mitchell et al., 2019).

Epigenetics has gained widespread attention as a means 
to better understand how an invariant genome can in fact be 
programmed to adapt to different environmental influences. 
Twin studies have provided fascinating findings whereby 
two individuals with almost an identical genome who are 
subjected to different environmental influences may acquire 
different traits, which may in turn affect disease susceptibility 
or resistance (Poulsen et al., 2007; Bell and Spector, 2011; 
Dempster et al., 2011; Tan et al., 2015) (Figure 1b). Thus, 
despite our genetic code being ‘hard-wired’, it appears 
that our genome is not absolutely static but there is instead 
robust interaction with environmental influences through the 
heritability of diverse epigenetic marks. As aging is defined as a 
gradual and progressive decline in normal biological functions 
(Calvanese et al., 2009; Saldanha and Watanabe, 2015), this 
phenomenon may coincide with the progressive accumulation 
of diverse combinations of epigenetic signatures throughout 
life in response to a myriad of environmental influences. Such a 
process could underlie the development of diseases and various 
health outcomes plaguing the global population, especially in 
people with increasing age. We suggest that it is plausible that 
many polygenic diseases may be confounded by environmental 
influences or stochastic variables (Riaz et al., 2016). Indeed, 
numerous studies provide evidence that epigenetics may play a 
critical role in influencing biological aging and promoting the 
onset of age-related diseases (Calvanese et al., 2009; Saldanha 
and Watanabe, 2015). As a result, a better understanding of the 
interaction between our genetic framework and our environment 
using an ‘epigenetics perspective’ may be valuable. Although 
we cannot control our exposure to many environmental factors, 
our dietary intake is one factor that can be controlled to a large 
extent. DR is indeed considered an acceptable intervention by 
gerontologists and researchers in countering aging (Kirk, 2001; 
Masoro, 2006; Minor et al., 2010), and it is quite possible that 
DR acts partly or even substantially via epigenetic mechanisms. 

Figure 1. Environmental Influences and Genetic Framework. (a) As our early ancestors were often challenged with periods of famine. And 
their procurement of food was accompanied by regular physical activity, they were presumably faced with periods of obligate food restriction 
and physical activity. The fundamental need for survival in terms of physical and mental maintenance without the consumption of food for 
extended periods appears to have shaped physiological, behavioural, and cognitive adaptations, and may thus have become inherited by 
modern humans within our genetic framework. As a result, the relative abundance of food coupled with our sedentary lifestyle today may be 
less compatible with the activity our evolutionarily programmed genes. As such, our modern lifestyle may disrupt our biochemical processes, 
and contribute to a myriad of age-related diseases. Thus, perhaps to some extent mimicking the environment of our ancestors may help 
to ameliorate the onset and development of diseases. (b) Twins possess high similarities in their genetic framework, yet when subjected to 
different environmental influences may acquire different traits that affect susceptibility to disease.
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In the first part of the review on DR, we will introduce current 
knowledge of both DR and epigenetic signatures.

2.0 Dietary Restriction
DR is defined as a voluntary abstinence from consumption of a 
selected or entire nutrient composition without compromising 
energy balance or inducing malnutrition (Masoro, 1998; 
Robertson and Mitchell, 2013). As shown in Table 1, variants of 
DR regimens have emerged over the years, and can be broadly 
classified as either caloric restriction (CR) or intermittent 
fasting (IF) (Lee and Longo, 2016), as well as the new ‘fasting 
mimicking diet’ (FMD) (Wei et al., 2018).

2.1 Caloric Restriction
CR is defined as a sustained eating pattern involving a reduction 
in day-to-day caloric intake by 15% to 40% as compared to 
ad libitum (AL). Notably, this method of DR does not result 
in malnutrition (Bales and Kraus, 2013) . The ideology of 
CR spans many centuries, with notable figures promoting CR 
including Hippocrates, to whom is ascribed the notion: “Let 
food be thy medicine and medicine be thy food” (Square, 2002). 
Experimental studies that began much later first found CR to be 
able to extend lifespan and improving reproductive performance 
in CR as opposed to AL rats (CM et al., 1935). These 
experimental findings drove a renaissance of nutrition research, 
in which CR was found to positively impact longevity and 
health across multiple life forms, from simple organisms (such 
as yeast Saccharomyces cerevisiae, nematode Caenorhabditis 
elegans, and fruit fly Drosophila melanogaster) to vertebrates 
(such as mice Mus musculus and primates Macaca mulatta) 
(Heilbronn and Ravussin, 2003). Besides, CR has been 
shown to provide protection against numerous diseases, 
including slowing brain atrophy and preserving cognition, and 
protecting against neurodegenerative diseases (e.g. Alzheimer 
and Parkinson’s diseases), intestinal dysfunction, obesity, 
osteoporosis, arthritis, cardiovascular disorders (e.g. heart and 
stroke), diabetes, and sarcopenia, as well lowering the risk and 
progression of cancer (Harvey-Berino, 1999; Luchsinger et al., 
2002; Colman et al., 2008; Cruzen and Colman, 2009; Marzetti 
et al., 2009; Devlin et al., 2010; Han and Ren, 2010; Longo and 
Luigi Fontana, 2010; Manzanero et al., 2011; Srivastava and C. 

Haigis, 2011; González et al., 2012; O’Flanagan et al., 2017; 
Prehn et al., 2017; Pifferi et al., 2018; Yousefi et al., 2018; De 
Lucia et al., 2018; Duszka et al., 2018; Radakovich et al., 2019; 
Taylor, 2019). 

2.2 Intermittent Fasting
IF involves adjusting the temporal intake of food while 
maintaining isocaloric consumption overall (Ganesan et al., 
2018). IF also has deep historical roots, with observance 
being reported in many religions for either spiritual reasons or 
physical benefits (Trepanowski and Bloomer, 2010; Patterson 
et al., 2015). IF is an umbrella term that encompasses different 
variants in the frequency of meal consumption. Time-restricted 
feeding (TRF) and alternate-day fasting (ADF) are examples of 
IF in which the timing of meals is varied. For TRF, daily meal 
consumption is restricted to a fixed window (such as a period 
of four to twelve hours) with nothing consumed outside of this 
window. ADF, on the other hand, extends the period of no or 
minimal calorie consumption (25% of energy needs), alternating 
between 24 hours of fasting and 24 hours of AL consumption. 
Another popular variant of IF is the 5:2 eating pattern, whereby 
during a 7 day period, unrestricted eating happens on five days 
in addition to two non-consecutive days of consumption of no 
or minimal calories (Gabel et al., 2018; Stekovic et al., 2019). 
Like CR, IF has been found to induce longevity across many 
animal models, as well as improving metabolic health. For 
instance, IF has been reported to influence the circadian clock, 
intestinal microbiota niche, and metabolic regulation controlling 
insulin sensitivity, lipid metabolism, hormonal changes, and 
inflammatory responses. This may lead to an improvement 
of metabolic function and may explain the development of 
resistance to cardiovascular diseases (e.g. heart attack and 
stroke), neurodegenerative diseases (e.g. Alzheimer disease), 
obesity, type II diabetes mellitus, and cancer (Wijngaarden et 
al., 2013; Collier, 2013; Fann et al., 2014, 2017; Chausse et al., 
2015; Patterson et al., 2015; Wegman et al., 2015; Harvie and 
Howell, 2017; Anton et al., 2018; Kim et al., 2018; De Groot et 
al., 2019).

2.3 Fasting Mimicking Diet
Our current social and economic environment typically enables 

Table 1: Different Types and Effects of Dietary Restriction Regimens.
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instant gratification from food-seeking to meet hunger, and this 
“obesogenic” model has made it more difficult for individuals 
to alter their eating patterns. The recently introduced FMD 
appears to be a combination of CR and IF, and it has arisen due 
to the lack of compliance in individuals to adhere to either CR 
or IF for a prolonged period. FMD is a form of periodic fasting 
that involves a monthly reduction in caloric intake through 
low carbohydrate and low protein consumption (~30% of 

energy needs) for five consecutive days and AL eating for the 
remaining calendar days, and can be practiced on a monthly or 
bimonthly basis. Notably, FMD has been shown to promote the 
extension of health span but not lifespan in rodents. FMD is also 
effective in enhancing neurocognitive function, and reducing a 
plethora of aging and disease markers, such as diabetes, cancer, 
and cardiovascular diseases (Brandhorst et al., 2015; Cheng et 
al., 2017; Wei et al., 2017, 2018; Rangan et al., 2019). 

Figure 2. Mechanism of Dietary Restriction. During DR there is a reduced energy status within the organism, resulting in corresponding 
decreases in blood glucose, insulin, IGF-1, growth hormones, sex hormones, and T3 thyroid hormones. Also, DR induces a reduction in both 
oxidative stress and inflammation. Following DR, there are increases in free fatty acids, adiponectin, and cortisol. A lower cellular energy 
status will lead to reduced mitochondrial activity and aerobic respiration, increasing the AMP:ATP ratio and NAD+ levels. Two major cellular 
nutrients and energy sensors, AMPK and SIRT1, will be then be activated, respectively. Activated AMPK will inhibit glycogen synthesis, 
ACC1, ACC2, and HMG-CoA to drive a reduction in fatty acid synthesis, oxidation, and cholesterol synthesis. Activated SIRT1 can enhance 
ketogenesis and lipolysis, and downregulate glycolysis and glutaminolysis. These effects may be also due to an activation of PPARα, reflecting 
direct and indirect functions of SIRT1. Activated SIRT1 can also repress the activity of PPARγ to modulate lipid metabolism and enhance 
fat mobilization in white adipose tissue during DR. Activated SIRT1 can inhibit NF-κB activity, inhibiting the expression of proinflammatory 
genes. SIRT1 activation is dependent on the increased interaction between FOXO3a and p53 at SIRT1 promoter sites. The physical interaction 
between FOXO3a and p53, and the subsequent activation of SIRT1, play important roles in repressing cell growth and proliferation. Notably, 
SIRT1 activation can activate LKB1, which will further activate AMPK, thus creating a positive feedback loop. Reduced levels of insulin, 
glucose and growth hormone downregulates insulin and IGF-R signaling pathways, inactivating the RAS/MAPK axis, repressing cell growth 
and proliferation and promoting apoptosis. Repression of IGF-R signaling will include the PI3K pathway, and inhibit downstream mTORC1, 
promoting autophagy. Inhibition of mTORC1 can also occur via activated AMPK in response to DR. Decreased mTORC1 function can promote 
ketogenesis and lipolysis, and repress glycolysis and glutaminolysis. Moreover, the corresponding decreased function of mTORC1 also 
inhibit HIF-1α, which downregulates key biological processes such as glucose metabolism, angiogenesis, and cell cycle progression. The NRF2 
pathway is also triggered by DR, which helps to increase production of protective antioxidant enzymes and mitochondrial biogenesis to 
reduce ROS activity. With lower levels of ROS, there will be reduced DNA damage and a maintained genome stability. Lower energy status will 
prime cells to low-intensity stress, and this hormetic mechanism will stimulate better management of stress, upregulate DNA repair genes, as 
well as shifting towards a preferred setting of maintenance and repair (not shown). Overall, DR can act via these mechanisms to counter age-
associated diseases and induce longevity. 
DR, dietary restriction; IGF-1, insulin growth factor 1; AMP, adenosine monophosphate; ATP, adenosine triphosphate; NAD+, nicotinamide 
adenine dinucleotide; AMPK, adenosine monophosphate kinase; SIRT1, sirtuin 1 deacetylase; ACC1 and ACC2, acetyl-coenzyme A carboxylase 
1 and 2; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-coenzyme A; PPARα and PPARγ, peroxisome proliferator-activated receptor gamma alpha 
and gamma; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; FOXO3a, forkhead box O3; LKB1, liver kinase B1; IGF-R, 
insulin growth factor receptor; RAS/MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; mTORC1, mammalian target of 
rapamycin complex 1; HIF-1α, hypoxia-inducible factor 1 alpha; NRF2, nuclear factor erythroid 2-related factor 2 ;ROS, reactive oxygen species. 
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2.4 Mechanism of Dietary Restriction
From findings in less complex, short-lived organisms through 
to mammals, it is generally accepted that DR can be an 
effective non-genetic and non-pharmacological intervention 
against aging through increased longevity and delayed onset 
and development of chronic diseases. Those findings from DR 
studies across diverse organisms suggest an innate evolutionary 
conservation of either genes or molecular players that respond 
positively to DR.  Indeed, studies that have begun to decipher 
the mechanisms of DR effects have revealed a plethora of 
conserved biological pathways and proteins that are modulated 
in response to a low energy status (Figure 2). 

DR exerts pleiotropic cellular effects, inducing a reduced 

energy status within the organism, and a corresponding decrease 
in blood glucose, insulin, insulin-like growth factor 1 (IGF-
1), growth hormones, sex hormones, and T3 thyroid hormones 
levels. Also, DR induces a reduction in both oxidative stress 
and inflammation. Moreover, following DR, an increase in free 
fatty acids, adiponectin, and cortisol can be observed (Ungvari 
et al., 2008; Redman et al., 2010; Abedelmalek et al., 2015; Lan 
et al., 2015; Kapahi et al., 2017).

A reduced cellular energy status will lead to lower 
mitochondrial activity and thus aerobic respiration, and 
corresponding increases in the adenosine monophosphate and 
adenosine triphosphate (AMP:ATP) ratio, and in nicotinamide 
adenine dinucleotide (NAD+) levels. In turn, two major cellular 

Figure 3. Effects of Dietary Restriction. DR can induce a myriad of systemic effects. In turn, a robust metabolic switching ensues, which results 
in molecular, cellular, and metabolic adaptations that delay the onset and development of many age-associated diseases and promote 
longevity.



REVIEW ARTICLE

Conditioning Medicine 2019 | www.conditionmed.org

Conditioning Medicine | 2019, 2(6):284-299

289

nutrients and energy sensors, adenosine monophosphate kinase 
(AMPK) and sirtuin 1 deacetylase (SIRT1), will be activated, 
respectively (Haigis and Guarente, 2006; Hatori et al., 2012; 
Marcinko and Steinberg, 2014). Activated AMPK will then 
inhibit glycogen synthesis, as well as acetyl-coenzyme A 
carboxylase 1 and 2 (ACC1 and ACC2) and 3-hydroxy-3-
methyl-glutaryl-coenzyme A (HMG-CoA) to reduce fatty acid 
synthesis, oxidation, and cholesterol synthesis (Motoshima et 
al., 2006; Thomson and Winder, 2009; Marcinko and Steinberg, 
2014; Jeon, 2016; Foretz et al., 2018). Activated SIRT1 can 
enhance ketogenesis and lipolysis, and downregulate glycolysis 
and glutaminolysis (Pedersen et al., 2008; Chakrabarti et 
al., 2011; Chang, Hung-Chun; Guarente, 2012; Zhu et al., 
2013). These effects may be also due to an activation of 
peroxisome proliferator -activated receptor alpha (PPARα), 
which suggests that SIRT1 can exert both direct and indirect 
functions. Activated SIRT1 can also repress the activity of 
peroxisome proliferator-activated receptor gamma (PPARγ), 
which will in turn modulate lipid metabolism and enhance fat 
mobilization in white adipose tissue during DR. Depending on 
the PPAR isoforms, it appears that SIRT1 can exert pleotropic 
effects on PPAR in response to DR (Purushotham et al., 
2009; Hayashida et al., 2010; Picard et al., 2012; Bonzo et al., 
2014; Khan et al., 2015). Furthermore, activated SIRT1 can 
also inhibit the activity of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), inhibiting the expression 
of proinflammatory genes (Gillum et al., 2011; Ghisays et 
al., 2015). SIRT1 activation is dependent on the increased 
interaction between forkhead box O3 (FOXO3a) and p53 at 
SIRT1 promoter sites during periods of nutrient deficiency, 
such as during DR. Thus, SIRT1 activation during DR can be 

regulated via the NAD+ or the FOXO3a axis. Furthermore, the 
physical interaction between FOXO3a and p53, as well as the 
subsequent activation of SIRT1, have been found to play key 
roles in repressing cell growth and proliferation (Hori et al., 
2013; Manuscript, 2013; Zhang et al., 2014). Notably, SIRT1 
activation can also activate liver kinase B1 (LKB1), which will 
further activate AMPK, thus creating a positive feedback loop 
(Wang et al., 2011; Laboratory, 2012).

When cells detect a corresponding drop in the levels of 
insulin, glucose, growth hormones, insulin, and insulin-
like growth factor receptor (IGF-R) signaling pathways are 
downregulated (Straus and Takemoto, 1990; Cheng et al., 
2014). As a result, DR can also inactivate the mitogen-activated 
protein kinase (RAS/MAPK) axis, to repress cell growth and 
proliferation and promote apoptosis (Morikawa et al., 2004; 
Fuentes et al., 2012). Repression of IGF-R signaling will also 
repress the phosphoinositide 3-kinase (PI3K) pathway and 
the downstream mammalian target of rapamycin complex 
1 (mTORC1), promoting autophagy. Notably, inhibition of 
mTORC1 can also occur by activated AMPK in response to 
DR. Decreased mTORC1 function can promote ketogenesis and 
lipolysis and inhibit glycolysis and glutaminolysis, as in SIRT1-
induced activation of PPARα (De Paula et al., 2017; Sabatini, 
2017; Tulsian et al., 2018). Moreover, decreased function of 
mTORC1 inhibit hypoxia-inducible factor 1 alpha (HIF-1α), 
which in turn downregulates key biological processes such as 
glucose metabolism, angiogenesis, and cell cycle progression 
(Parsons, 2001; Laplante and Sabatini, 2013; Saxton and 
Sabatini, 2017). The nuclear factor erythroid-2-related factor 
2 (NRF2) pathway is also triggered by DR and it contributes 
to increases in production of protective antioxidant enzymes 
and mitochondrial biogenesis and reduction of reactive oxygen 
species (ROS).  With reduced ROS levels there will be less 
DNA damage and improved maintenance of genome stability 
(Kulkarni et al., 2014). Lower energy status will also prime 
cells to low-intensity stress, a hormetic mechanism that can 
facilitate better management of stress, upregulate DNA repair 
genes, and shift towards a preferred status of maintenance and 
repair (Kouda and Iki, 2010; Horne BD, Muhlestein JB, 2015). 

Systemic effects on major organs are also known to occur 
in response to DR via these molecular and cellular adaptations. 
In the brain, DR has been reported to enhance cognitive 
function and neurotrophic factor release, serving to protect 
against neurotoxicity and improve stress resistance. DR can 
also promote neurogenesis and mitochondrial biogenesis, and 
reduce inflammation and oxidative stress within the brain (Qiu 
et al., 2010; Kynjai et al., 2019). Within the gut, DR promotes 
gut mobility, and induces a reduction in inflammation, cell 
proliferation, and energy uptake (Brennan et al., 2011; Ott et 
al., 2017; Id et al., 2018; Lian et al., 2018). On the other hand, 
in DR the pancreas comprises less fat and there is promotion 
of glucagon secretion (Anton et al., 2018; Jiang et al., 2019). 
Moreover, DR upregulates lipolysis and ketogenesis within 
adipose tissue, increasing adiponectin synthesis and decreasing 
leptin secretion (Ding et al., 2012; Rogozina et al., 2012; 
Fabbiano et al., 2016). In skeletal muscle, oxidative metabolism 
is shifted preferentially towards increased anabolism, with a 
corresponding enhancement of insulin sensitivity, mitochondrial 
biogenesis, reduced body temperature, as well as stress 
adaptation and resistance in response to DR (Usuki et al., 
2004; Hempenstall et al., 2012; Chen et al., 2015; Mitchell et 
al., 2015; Martins et al., 2018; Faitg et al., 2019). In the heart 
and vasculature, there is a reduced blood pressure and resting 
heart rate induced by DR, with increased parasympathetic tone, 
reduced heart rate variability, and improved cardiovascular 
stress adaptation (Weiss and Fontana, 2011; Stein et al., 2012; 
Shinmura, 2013; Nicoll and Henein, 2018). Finally, in response 
to DR the liver triggers gluconeogenesis, glycogenolysis, 

Figure 4. Overview of Epigenetic Modifications. Epigenetic 
modifications can be broadly categorized into DNA methylation, 
histone modifications, histone remodeling, and microRNA 
involvement. These epigenetic modifications to the genome occur 
via enzymatic modifications to either the DNA sequence directly 
or through histone proteins that form part of the hierarchical 
packing of the chromosomal DNA. In turn, gene expression can 
be modulated directly or indirectly via an overall modification to 
chromatin structure and accessibility. The epigenetic signature 
landscape across the genome is collectively termed the ‘epigenome’, 
and unique epigenetic tags function as distinct microdomains within 
the nucleus to regulate differential patterns of gene expression.
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mitochondrial biogenesis, and enhanced insulin sensitivity (Hell 
et al., 1980; Weindruch et al., 1980; Hagopian et al., 2003; 
Browning et al., 2008; Kirk et al., 2010). 

In summary, DR triggers a lower energy status within the 
organism, which in turn commonly induces robust metabolic 
switching in major organs (Webster et al., 1972; Millward et 
al., 1974; Camps et al., 1992; Trayhurn et al., 1995; Mattson 
and Wan, 2005; Longo and Mattson, 2014; Bujak et al., 2015; 
Mattson et al., 2017). The resulting systemic changes occur 
via molecular, cellular, and metabolic adaptations, and may 
promote longevity and delay the onset and development of 
many age-associated diseases (Figure 3). 

3.0 Epigenetics
Epigenetics is an emerging field of knowledge relating to 
the complex interactions between genome and environment, 
defined as mitotically and meiotically heritable genetic changes 
without corresponding changes to the invariant DNA sequence 
(Panawala et al., 2017; Ng et al., 2018). These epigenetic 
effects on the genome occur via enzymatic modifications to 
either the DNA sequence directly or through histone proteins 
that form part of the hierarchical packing of the chromosomal 
DNA (Figure 4). Gene expression can then be modulated 
directly or indirectly via an overall modification towards 
the chromatin structure and accessibility. The landscape 
of epigenetic signatures across the genome is termed the 
‘epigenome’, with these unique epigenetic tags functioning 
as distinct microdomains within the nucleus to differentially 
regulate patterns of gene expression (Qureshi and Mehler, 
2010). The overall epigenome status within the nucleus can be 
also be considered as a ‘tug-of-war’, whereby each epigenetic 
modification can either promote or inactivate gene expression. 
The overall direction of gene expression is thereby dependent 
on the sum of these dynamic interactions. For didactic purposes, 
these epigenetic modifications can be broadly categorized to 
comprise DNA methylation, histone protein modifications, 
histone remodeling complexes, as well as involvement of 
microRNAs.

3.1 DNA Methylation
DNA methylation is the principal epigenetic modification at 
the DNA sequence level (Figure 4 and 5). The double helical 
DNA structure is composed of a combinational sequence of 
four nucleotide bases; namely thymine, adenine, cytosine, and 
guanine. DNA methylation involves the principal tagging of 
a methyl group to carbon position five of the cytosine ring, 
and this process tends to occur at higher frequency in regions 
termed CpG dinucleotide islands. CpG islands are genomic 
regions spanning more than 500-base pairs of DNA and are 
often located at gene promoter regions which are enriched near 
the 5’ gene transcript. The characterization of CpG islands 
falls into two categories; the composition of both cytosine 
and guanine appears to occupy above 55% in these 500-base 
pairs region, or CG:GC observed frequency ratio to be at least 
0.6. DNA methylation can also occur in other regions called 
‘CpG shores’, defined as lower density CpG islands residing 
downstream by approximately 2 kb (Portela and Esteller, 
2010a). Conventionally, DNA methylation was thought to occur 
only at CpG islands, but recent findings indicate its occurrence 
in CpG shores shown the complexity underlying this form of 
regulation. While cytosine nucleotides are scattered across the 
genome, DNA methylation distribution is asymmetrical and 
considered to be relatively rare, especially in the mammalian 
genome, accounting for only 1% of the genome size (Cooper 
et al., 2010). This is thought to be due to the fact that the 
addition of a methyl group to cytosine to form 5-methylcytosine 
is inherently genetically unstable. 5-methylcytosine cannot 
be excised from the genome or recognized by the DNA 

repair system. To counter this, 5-methylcytosine undergoes 
spontaneous deamination to yield a thymine, yet become 
prone to transition mutations. As a result, CpG islands have 
evolved to be depleted across the genome and account for very 
low proportions to decrease the risk of becoming mutational 
hotspots (Cooper et al., 2010). 

DNA methylation is catalyzed by an important family of 
enzymes called DNA methyltransferases (DNMT) (Moore et 
al., 2013). The DNMT family consists of five members, of 
which only three (DNMT1, DNMT3a, and DMNT3b) possess 
enzymatic activity. DNMT3a and DNMT3b catalyze de novo 
methyl group transfer from S-adenosyl methionine to CpG sites, 
whereas DNMT1 is mostly important for the maintenance of 
the overall DNA methylation landscape across the genome (Kim 
et al., 2009; Feng et al., 2010). The conversion and maintenance 
of methionine and folate to S-adenosyl methionine are mediated 
by a group of enzymes called methylenetetrahydrofolate 
r e d u c t a s e s  ( M T H F R ) .  B e s i d e s  D N A m e t h y l a t i o n , 
S-adenosylmethionine also plays important roles in DNA 
synthesis (Alluri et al., 2005; Daniels et al., 2007; Zhou et al., 
2014). On the other hand, the process of DNA demethylation 
at 5-methylcytosines to 5-hydroxymethylcytosines is mediated 
by ten-eleven translocation (TET) enzymes in a locus-specific 
manner. However, these groups of enzymes have only recently 
become known in the field of epigenetics and understanding of 
their functions remains poor (Figure 5) (Xu and Wong, 2015). 

The effects of DNA methylation have often been linked 
to transcriptional inactivation via various mechanisms. DNA 
methylation can directly block the binding of specific DNA 
binding factors to transcriptional start sites and as a result 
halt transcription. In another instance, 5-methylcytosines 
within CpG sites are often recognized by protein families 
possessing conserved methyl-CpG-binding domains (MBD). 
Binding of these proteins may in turn recruit a combination 
of transcriptional corepressors, polycomb proteins, or even 
chromatin remodeling complexes to bring about transcriptional 
repression (Huck-Hui and Bird, 1999; Du et al., 2015). Besides 
playing a conventional role in the area of gene silencing, DNA 
methylation has been implicated in many biological processes 
such as genomic imprinting and stability, X chromosome 
inactivation, differentiation, and development (Moore et al., 
2013; Wu and Zhang, 2014). 

3.2 Histone Modifications and Remodeling
Chromosomal DNA within the eukaryotic genome is often 
interlaced with distinct packing and folding, resulting in distinct 
organizational structure (Figure 4 and 5). At the fundamental 
level, a nucleosome structural core is first formed through 
wrapping of a 147 base-pair double helical DNA around an 
octamer of histone proteins consisting of pairs of H2A-H2B 
dimers and H3-H4 dimers. This interaction is mediated by the 
positive charges within the rich pool of lysine and arginine 
residues in histone proteins, as well as the negatively charged 
sugar phosphate backbone of DNA. Between two nucleosome 
cores, DNA that is not wrapped around nucleosomes is 
referred to as linker DNA. This linker DNA tends to be 
associated with H1 histone proteins (Zhang and Reinberg, 
2001; Boyanapalli and Kong, 2015). The globular structure 
of histone proteins within nucleosome complexes represents 
a form of steric hindrance that may impede the accessibility 
of DNA replication and transcriptional machinery to genomic 
sites. As a result, the relative packing of DNA around these 
nucleosome cores may determine the relative accessibility 
for the machinery to initiate replication and transcription. 
Therefore, at the genomic level, two defined areas of DNA can 
be classified depending on the relative packing of DNA; namely 
euchromatin and heterochromatin. Euchromatin regions are 
generally characterized by a more spacious chromatin structure 
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Figure 5. Mechanisms of Epigenetic Modifications. During DNA methylation, a methyl group is added to carbon position five of the cytosine 
ring at either CpG dinucleotide islands or CpG shores. DNA methylation is catalyzed by DNMTs, whereas DNA demethylation is catalyzed by 
TETs. DNA methylation tends to be associated with gene silencing whereas DNA demethylation is associated with transcriptional activation. 
Chromosomal DNA within the eukaryotic genome is often interlaced with distinct packing and folding, resulting in a distinct organizational 
structure. At the fundamental level, a nucleosome structural core is first formed through wrapping of a 147 base-pair double helical DNA 
around an octamer of histone proteins consisting of pairs of H2A-H2B dimers and H3-H4 dimers. Between two nucleosome cores, DNA that 
is not wrapped around nucleosomes is referred to as ‘linker DNA’, which tends to be associated with H1 histone proteins. A plethora of post-
translational modifications (such as acetylation, methylation, phosphorylation, sumoylation, biotinylation, and ubiquitination) can occur on the 
amino terminal tail protruding from each histone subunit within the nucleosome complex. These histone modifications can affect the relative 
packing of DNA around these nucleosome cores, and may determine the relative accessibility for the machinery to initiate replication and 
transcription. Chromatin structure can be modified by ATP-dependent histone remodeling complexes, using the energy from ATP hydrolysis 
to locally disrupt the interaction between DNA and histones. These remodelers mediate alterations to chromatin structure via nucleosome 
sliding, eviction, assembly, spacing, histone dimers eviction or replacement, and even entire histone replacement. In addition, miRNAs 
demonstrate complementary interaction with specific genes and modulate gene expression. Cellular miRNAs are synthesized in a sequential 
manner and occur in both the nucleus and the cytosol. Within the nucleus, the genome comprises numerous miRNA genes transcribed by 
RNA polymerase II to form a single large pri-miRNA transcript. Because this pri-miRNAs transcript consists of multiple miRNA loci, it undergoes 
further processing by a complex called Drosha/DGCR8, a class of RNaseIII enzymatic complex, to generate shorter hairpin-loop structurers 
termed ‘pre-miRNAs’. This pri-miRNA is exported into the cytosol by Exportin-5 in a RAN-GTP dependent manner. Within the cytosol, another 
complex belonging to another class of RNaseIII enzymes, termed ‘Dicer/TRBP’ exert its action. Dicer processes the pri-miRNAs into a duplex 
of mature miRNAs, which undergoes asymmetrical unwinding by the Dicer/TRBP complex to yield a single-stranded mature miRNA. This 
single-stranded form loads itself into a ribonucleoparticle to yield an RISC, which is the active form of the gene silencing complex. Together, 
the single-stranded mature miRNAs within the RISC complex will identify the 3’-UTR of targeted mRNAs. The mode of action of gene silencing 
mediated by miRNAs can occur in two ways, depending on its complementarity with the targeted mRNAs. miRNAs which bind to targeted 
mRNAs in perfect complementarity induce rapid deadenylation and decapping, leading to mRNA degradation. An imperfect complementarity 
binding of miRNAs to targeted mRNAs result in translational suppression. 
DNMTs, DNA methyltransferase; TETs, ten-eleven translocation; pri-miRNAs, primary miRNA; pre-miRNAs, precursor miRNAs; RISC, RNA-
induced silencing complex; 3’-UTR, 3’ untranslated region.
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which in turn exhibits higher transcriptional rates, whereas 
heterochromatin regions demonstrate transcriptional silence via 
tight packing of chromatin (Tamaru, 2010). 

The relative transition between these two states is highly 
dependent on post-translational modifications that can occur on 
the amino terminal tail protruding from each histone subunit 
within the nucleosome complex. Histone modifications tend 
to be short-term and reversible and are readily modulated 
by external environmental changes (Cedar and Bergman, 
2009; Handy et al., 2011; Qureshi, 2011). A myriad of post-
translational modifications (such as acetylation, methylation, 
phosphorylation, sumoylation, biotinylation, and ubiquitination) 
catalyzed by a plethora of enzymes have been reported to occur 
at specific amino acid sites within each histone. Each histone 
modification in turn will determine a critical function, which 
translates to distinct cellular outcomes (Figure 5). As such, 
the sum of all histone modifications (termed ‘histone codes’) 
will determine the overall changes at the cellular level, such as 
chromatin assembly, transcriptional activation or repression, 
telomere dynamics, DNA repair, cell cycle, as well as apoptosis 
(Lennartsson and Ekwall, 2009; Portela and Esteller, 2010). 
For didactic purposes, two well-studied examples of histone 
modifications, namely acetylation and methylation, will be 
discussed to more fully describe the mechanism and complexity 
underlying histone modifications. 

Histone acetylation involves the covalent addition of an 
acetyl group to a histone tail lysine residue at a conserved 
epsilon-amino group and is often mediated by a family of 
enzymes called histone acetyltransferases (HATs). Upon histone 
acetylation, a synergistic interaction with histone remodeling 
complexes may be formed with HATs, which in turn weakens 
the interaction between DNA and histone proteins, thus 
promoting nucleosome sliding away from DNA, facilitating less 
packing of chromatin and higher accessibility of transcriptional 
machinery and activity (Figure 5). By contrast, the removal of 
acetyl groups from histones is mediated by histone deacetylases 
(HDACs), which may in turn recruit transcriptional repressors 
to downregulate transcription via promotion of tighter packing 
of chromatin (Legube and Trouche, 2003). Histone acetylation 
and deacetylation at various sites has been reported to be 
critical for a plethora of biological roles besides transcription, 
such as histone deposition, chromatin assembly, transcriptional 
elongation, telomeric silencing, and DNA repair (Tamburini and 
Tyler, 2005; Zhao et al., 2005; Gong and Miller, 2013; Church 
and Fleming, 2018). 

On the other hand, methylation of histone involves the 
addition of methyl groups to histone amino terminal tails 
via the actions of histone methyltransferases (HMTs), with 
preferential addition to either lysine or arginine residues (Zhang 
and Reinberg, 2001; Chakravarty et al., 2017). However, effects 
arising from histone methylation are often diverse and complex, 
depending on the type or position of amino acid residues that 
are methylated, and the number of methyl groups added within 
each specific locus (Figure 5). For instance, at specific lysine 
residues, methyl groups can be added singly, twice or three 
times, whereas at specific arginine residues methyl groups can 
be added either once or twice. This complexity is confounded in 
that certain methylated residues, such as di-methylated arginine 
residues, often demonstrate stereo topological layout, either 
as symmetrical or asymmetrical, which may produce diverse 
functions (Chen et al., 2012; Chakravarty et al., 2017). Given 
that enormous complexity occurs as a result of the possible 
permutations and combinations of histone methylation tags, 
it is difficult to predict biological effects arising from this 
post-translational modification. Nevertheless, many studies 
have shown that histone methylation plays important roles 
in transcriptional activation and repression, transcriptional 
elongation, genomic imprinting, checkpoint response, and X 

chromosome inactivation (Miloucheva, 2002; Chen and Zhu, 
2016).

Chromatin structure within the eukaryotic genome can be 
modified not only by histone enzymatic modifications, but also 
through the actions of histone remodeling complexes (Figure 
4 and 5). These complexes are referred to as ATP-dependent 
remodeling complexes, using the energy from ATP hydrolysis 
to locally disrupt the interaction between DNA and histones. 
The first histone remodeling complex gene was discovered 
during genetic screening of S. cerevisiae, and subsequently 
termed switching-defective 2 (SWI2) or sucrose non-fermenting 
2 (SNF2). The SWI/SNF2 complex was found to mediate 
alterations in chromatin structure that led to transcriptional 
activation (Vignali et al., 2000). Besides the SWI/SNF2 family, 
three other families of remodelers have now been identified; 
namely the imitation-switch (ISWI), chromodomain helicase 
DNA-binding (CHD), and inositol-requiring 80 (INO80). 
These four identified families of remodelers share a high 
degree of conservation of an innate ATPase-helicase domain 
and can function as either a monomer (e.g. CHD1) or as a 
distinct macromolecular complex (e.g. ISWI). These complexes 
can be made up of different combinations of subunits, and 
may be accompanied by distinct microdomains. Depending 
on their composition, histone remodeling complexes can 
exert synergistic or antagonistic biochemical and genetic 
functions (Pillus, 2015). Moreover, these remodelers can 
mediate alterations in chromatin structure via nucleosome 
sliding, eviction, assembly, spacing, histone dimers eviction 
or replacement, and even entire histone replacement (Figure 
5). Furthermore, histone modifications and histone remodeling 
complexes do not only function independently. It has been 
reported that complexes such as ISWI and CHD1 can also 
interact with histone modifiers and histone modifications, 
resulting in diverse functions. As such, the dynamic kinetics of 
nucleosome positions within the eukaryotic genome will impact 
key biological processes, such as regulation of gene expression, 
DNA replication and repair, and homologous recombination 
events (Vignali et al., 2000; Liu et al., 2012; Narlikar et al., 
2013; Pillus, 2015; Tyagi et al., 2016; Zhang et al., 2016; De 
Castro et al., 2017; Stadler and Richly, 2017). 

3.3 MicroRNAs
MicroRNAs (miRNAs) constitute an important class of 
noncoding RNA and are defined as short (18-25 nucleotides in 
length), single-strand molecules which exert their actions at the 
post-transcriptional level (Figure 4 and 5). miRNAs demonstrate 
complementary interaction with specific genes and can 
modulate gene expression. Cellular miRNAs are synthesized 
in a sequential manner and occur in both the nucleus and the 
cytosol. Within the nucleus, the genome comprises numerous 
miRNAs genes which will be transcribed to form a single large 
primary miRNA (pri-miRNAs) transcript by RNA polymerase 
II. Because this pri-miRNA transcript consists of multiple 
miRNA loci, it undergoes further processing by a complex 
called Drosha/DGCR8, a class of RNaseIII enzymatic complex, 
to generate shorter hairpin-loop structures termed as precursor 
miRNAs (pre-miRNAs). This pre-miRNA is exported into the 
cytosol by Exportin-5 in a RAN-GTP dependent manner. Within 
the cytosol, another complex belonging to another class of 
RNaseIII enzymes termed ‘Dicer/TRBP’ exerts its action. First, 
Dicer processes pre-miRNAs into a duplex of mature miRNAs, 
which undergoes asymmetrical unwinding by the Dicer/TRBP 
complex to yield a single-stranded mature miRNA. It will then 
load itself into a ribonucleoparticle to yield an RNA-induced 
silencing complex (RISC), which is the active form of the 
gene silencing complex (Figure 5) (Chuang and Jones, 2007; 
Moutinho and Esteller, 2017; Yao et al., 2019). 

Together, the single-stranded mature miRNAs within the 
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RISC complex identify the 3’ untranslated region (3’-UTR) 
of targeted mRNAs. Gene silencing by miRNAs can occur in 
two ways, depending on its complementarity with the targeted 
mRNAs. miRNAs which bind to targeted mRNAs with perfect 
complementarity induce rapid deadenylation and decapping, 
which leads to mRNA degradation. On the other hand, an 
imperfect complementarity binding of miRNAs to targeted 
mRNAs tends to result in translational suppression. While the 
activity of miRNAs tends to result in gene downregulation, 
miRNAs may also promote gene upregulation. For instance, a 
group of miRNAs can bind to 5’ untranslated region (5’-UTR) 
of targeted mRNAs to promote ribosomal protein expression, 
aiding in translation. Interestingly, given that miRNAs are 
short and can only recognize partial sequences within targeted 
mRNAs, miRNAs can perform its function simultaneously 
in a plethora of mRNAs and yet produce diverse outcomes in 
a cell-dependent manner (Figure 5). Besides modulating the 
level of gene expression, miRNAs can regulate key epigenetic 
remodelers such as DNMTs, TETs, HDACs, and HMTs. 
Notably, this epigenetic regulation by miRNAs is not one-sided, 
as the expression of miRNAs can be modulated by a myriad of 
factors, such as DNA methylation, histone modifications, and 
transcription factors (Figure 4 and 5). Given the complicated 
mode of action of miRNAs, it is not surprising that miRNAs 
play diverse roles in many biological processes such as cellular 
proliferation, differentiation, development, metabolic processes, 
and apoptosis (Chuang and Jones, 2007; Qureshi, 2011; Udali et 
al., 2013; Khoshnam et al., 2017; Moutinho and Esteller, 2017; 
Yao et al., 2019). 

4.0 Conclusion
DR has a long historical root and has been practiced by many 
groups since antiquity. Research on the biological effects 
of DR and its underlying mechanisms has only become 
commonplace relatively recently, but has gained enormous 
interest as a potential ‘holy grail’ for extension of health and 
lifespan.  Supporting evidence has come from studies of many 
organisms, and have identified a plethora of molecular players 
and signaling pathways induced or modulated by DR associated 
with profound metabolic effects that appear capable of 
counteracting the onset and development of disease. However, 
the nature of DR-induced effects is complex and often varied 
and non-translatable between different organisms. Given 
that DR is a non-pharmacological and non-genetic lifestyle 
intervention that be readily adopted by many individuals, it is 
appears that DR represents an environmental stressor that can 
truly influence an individual’s epigenetic landscape. Hence, 
it is paramount to also investigate the nature of epigenetic 
signatures, and the detailed relationship between both DR and 
epigenetics will be discussed in part two of this review. 
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