
Conditioning Medicine
www.conditionmed.org

REVIEW ARTICLE | OPEN ACCESS

Epigenetic Regulation by Dietary Restriction: Part II

Gavin Yong-Quan Ng1, David Yang-Wei Fann1, Dong-Gyu Jo2, Christopher G. Sobey3, Thiruma 
V. Arumugam1,2,3

In the first part of our review, we extensively discuss the different variants of dietary restriction (DR) regimens, as well as 
its corresponding mechanism(s) and subsequent effects. We also provide a detailed analysis of the different epigenetic 
mechanisms based on current knowledge. We postulate that DR may represent an environmental intervention that can 
modulate the epigenomic profile of an individual. It is highly plausible that epigenetic regulation by DR may help explain the 
asymmetric manifestation of DR effects in different individuals. Additionally, epigenetic modifications via DR may lead to 
epigenetic programming, providing protection against age-associated diseases, which in turn could lead to reduced morbidity 
and increased lifespan. In the second part of the review, we summarize recent findings that highlight the epigenomic axis of 
DR, which provides a better understanding of the mechanisms by which its numerous health benefits are achieved.
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1.0 Introduction 
Following sexual maturation, aging is characterized by a 
progressive decline in biological processes through a loss in 
molecular fidelity, and is a major risk factor for development 
of many chronic diseases. While the underlying mechanisms 
of aging involve many specific hallmarks and conserved 
biological pathways, we still have a poor understanding of 
the links between aging and development of age-associated 
diseases due to the complexities of genetic, environmental, and 
stochastic factors. As a result, strategies to significantly promote 
extension of health span during aging have been unsuccessful. 
Recent studies have shown that aging possess an epigenetic 
component, with many age-associated epigenetic changes 
underlying hallmarks of aging. For example, aging has been 
implicated in alterations to DNA methylation, to imbalance in 
histone modifications, to chromatin remodeling, and with an 
involvement of many miRNAs. As such, it follows that aging 
may also be driven by extensive epigenomic remodeling, 
which may in turn promote the development of age-associated 
diseases.  Because epigenetic modifications may be modifiable 
by environmental changes and exhibit immense plasticity, they 
could be used transduce external signals and regulate aging 
through gene regulation. It has been widely reported that DR 

can promote changes in gene expression and attenuate age-
associated changes across many organisms (Lee et al., 1999; 
Swindell, 2009; Plank et al., 2012; Choi et al., 2013; Whitaker 
et al., 2014; Wood et al., 2015; Hadad et al., 2016; Cheng et 
al., 2017; Wei et al., 2017; Kim et al., 2018; Malinowski et al., 
2019; Ng et al., 2019). DR, as previously defined in the first part 
of our review, is a voluntary abstinence from consumption of a 
selected or entire nutrient composition without compromising 
energy balance or inducing malnutrition (Masoro, 1998; 
Robertson and Mitchell, 2013). Variants of DR regimens have 
emerged over the years, and can be broadly classified as either 
caloric restriction (CR) or intermittent fasting (IF) (Lee and 
Longo, 2016), as well as the new ‘fasting mimicking diet’ 
(FMD) (Wei et al., 2018). Since DR impacts both lifespan and 
health span in a plethora of model organisms, it is plausible that 
nutrient availability can also drive epigenetic remodeling to 
impact aging. In this second part of the review, we will describe 
the relationship between DR and the epigenome (Figure 1 and 
Table 1).

2.0 Dietary Restriction and DNA Methylation
DR has been widely reported to influence age-associated genes 
expression via DNA methylation across a wide range of models 
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and species. For example, in the relatively simple invertebrate 
model of Daphnia magna, DNA methylation changes following 
CR were observed to control expression of genes related to 
methylation and acyl-Coenzyme A dehydrogenase (Hearn et 
al., 2019). Such a phenomenon can also be demonstrated in 
rodents. CR can protect against age-associated methylation 
in the liver of mice (Miyamura et al., 1993; Cole et al., 
2017). CR initially represses DNA methylation in mice, but 
interestingly the effects may become less prominent with age. 
Notably, in the liver of mice, CR can suppress age-dependent 
increases in c-myc gene methylation (Miyamura et al., 1993) 
and suppress changes in DNA methylation (Hahn et al., 2017), 
which drives epigenetic reprogramming of lipid metabolic 
processes, leading to a metabolic switch towards reduction in 
triglyceride levels and short-chain triglyceride-associated fatty 
acids that is more pronounced with age (Hahn et al., 2017). 
On the other hand, CR increased ras DNA methylation in rat 
pancreatic acinar cells such that across generations, CR cells 
demonstrated reduced oncogene expression and mutations, 
including reduced p53 tumor suppressor gene mutation, 
proliferation, and transformation (Hass et al., 1993). In rat 
kidney, CR induced increased DNA methylation in promoter 

and intronic regions, which repressed pathways associated with 
age-associated diseases such as cancer and diabetes (Kim et 
al., 2016). In the aged mouse brain, CR induced attenuation 
of DNA methylation at both the cytosine-guanine (CG) and 
non-CG (CH) sites in the hippocampus, leading to activation 
of neuroprotective pathways, and impacted cognitive function 
via DNA methyltransferase 3a (DNMT3a) (Chouliaras et al., 
2011).  CR can also suppress age-associated increases in DNA 
methylation and hydroxymethylation in cerebellar Purkinje 
cells, pointing to a spatial regulation of DNA methylation in 
different brain regions (Lardenoije et al., 2015). In a mouse 
model of female breast cancer, CR induced hypermethylation at 
CpG sites for transcriptional regulator CCCTC-binding factor 
of both estrogen receptor 1 and 2 (ESR1 and ESR2), leading to 
transcriptional activation and gene expression of both estrogen 
receptor alpha and beta (ERα and ERβ). CR also attenuated 
the obesity-associated increase in DNA methyltransferase 1 
(DNMT1) DNA methylation, and reduced development of 
mammary tumorigenesis. Therefore, an intervention with CR 
may exert a crucial role in modulating DNA methylation to 
prevent Herceptin 2 (HER2)-positive breast cancer development 
(Rossi et al., 2017). 
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Figure 1. Dietary Restriction and Epigenetics. Schematic diagram showing robust systemic effects exerted by DR, as well as an overview of the 
different epigenetic mechanisms. Establishing the relationship between DR and epigenetics is critical in deciphering the epigenetic milieu of 
DR in producing differential responses. This may help to explain the asymmetric manifestation of DR effects, as well as allowing us to better 
understand the epigenetic regulation of DR by which its numerous health benefits are achieved.
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While DNA methylation is tightly coordinated, collective 
gains and losses of DNA methylation, termed ‘epigenetic drift’, 
has been described in mice, rhesus monkeys, and humans 
during aging (Maegawa et al., 2017). Blood studies in mice 
showed that unique DNA methylation signatures became more 
prominent with age and contributed towards aging following 
remodeling of the genome. CR has been shown to remodel these 
DNA methylation signatures to contribute to longevity (Sziráki 
et al., 2018). Moreover, a study on blood from rhesus monkeys 
showed CR to attenuate this age-associated DNA methylation 
drift, an effect that correlates with increased lifespan (Maegawa 
et al., 2017). 

Effects of DR on DNA methylation have also been widely 
studied in humans. In Caco-2 human epithelial colorectal 
adenocarcinoma cells and human umbilical vein endothelial 
cells, Sirt1 mediates DNA methylation by DR to control 
differential gene expression (Ions et al., 2013). Glucose 
restriction in WI-38 cells and immortalized WI-38/S cancer 
cells induces changes in DNA methylation and subsequent 
chromatin remodeling at both hTERT and p16 promoter 
regions. Notably, normal WI-38 cells exhibit increased 
longevity after glucose restriction, whereas WI-38/S cancer 
cells exhibit growth inhibition and apoptosis, providing an 
insight into how DR and DNA methylation might be used 
to improve cancer treatment (Li et al., 2019). Interestingly, 
postmenopausal women who were either overweight or obese 
possessed significant DNA methylation differences at 35 loci 
prior to CR in their subcutaneous adipose tissue, but showed a 
reduction to only three significant DNA methylation differences 
following it. At these three loci, DNA methylation controls 
genes involved in body weight control, insulin secretion, and 
genome imprinting (Mill et al., 2010). Moreover, in another 
study performed in obese women using blood samples or 
peripheral blood mononuclear cells, similar methylation 
patterns were observed in hypomethylation of both leptin 
and tumor necrosis factor-alpha (TNF-α) promoter regions 
following CR-induced weight loss (Cordero et al., 2011). Other 
genes potentially controlled by DNA methylation modulation 
include cluster determinant 36 (CD36), cluster determinant 14 
(CD14), pyruvate dehydrogenase kinase 4 (PDK4), and fatty 
acid desaturase 1 (FADS1) (Amaral et al., 2014). Furthermore, 
TNF-α is a proinflammatory cytokine and obese men subjected 
to CR-induced weight loss demonstrated hypomethylation at the 
TNF-α promoter region in blood mononuclear cells (Campión 
et al., 2009). A similar study in peripheral blood mononuclear 
cells from overweight or obese men found key changes in DNA 
methylation loci at the ATPase phospholipid transporting 10A 
(ATP10A), cluster determinant 44 (CD44), and Wilms tumor 1 
(WT1) genes induced by CR (Milagro et al., 2011). In addition 
to CR, overnight and 36-hour fasting in young low birthweight 
and normal weight subjects demonstrated hypermethylation 
in both leptin (LEP) and adiponectin (ADIPOQ) genes from 
plasma samples, which positively correlated with total body fat 
composition (Hjort et al., 2017). Concordantly, it appears that 
DNA methylation changes at key gene loci can be used as an 
early indicator of response to human weight-loss interventions. 

Interestingly, in patients with morbid obesity, for which 
bariatric surgery is used as an option to induce weight loss, their 
reduced food intake due to a smaller stomach capacity results in 
a mode of CR. In one study, obese nondiabetic patients placed 
on a very low caloric diet only exhibited hypomethylation of 
peroxisome proliferator-activated receptor gamma coactivator 
1-alpha (PPARGC1A) in their blood, whereas those who 
underwent a Roux-en Y gastric bypass (RYGB), showed altered 
levels of methylation in PPARGC1A, transcription factor A 
(TFAM), interleukin-1 beta (IL1-β), interleukin-6 (IL-6), and in 
TNF-α promoter regions with corresponding hypermethylation 
in PDK4, IL1-β, IL-6, and TNF-α after one year. It has also 

been reported that levels of PPARGC1A, PDK4, sorbin, and 
SH3 domain containing 3 (SORBS3) DNA methylation were 
altered in skeletal muscle following RYGB (Barres et al., 
2013; Day et al., 2017). Furthermore, in adipose tissue, DNA 
methylation of many CpG sites of promoter regions, such 
as cholesteryl ester transfer protein (CETP), forkhead box 
P2 (FOXP2), HDAC4, DNMT3B, potassium voltage-gated 
channel subfamily Q member 1 (KCNQ1), and Hox, are altered 
following gastric bypass (Benton et al., 2015). Thus, it appears 
that CR-relevant surgical interventions to treat obesity such 
as RYGB may have a robust impact on DNA methylation of a 
myriad of genes, providing an impetus for further investigation 
of the associations of DNA methylation with obesity, and the 
mechanisms underlying improvements in metabolic health 
following surgery. 

Notably, DR-induced changes in DNA methylation can 
result in epigenetic reprogramming and maintenance that may 
also subsequently affect future generations of offspring. For 
example, DR during maternal pregnancy in mice resulted in 
intrauterine growth restriction (IUGR) of the fetus, which 
promoted the development of chronic diseases (such as 
glucose intolerance, increased fat deposition, as well as 
hypercholesterolemia) in adulthood of the male offspring. It 
appears that DR can influence the placental environment via 
genome-wide hypomethylation (Chen et al., 2013). Interestingly, 
people impacted by the Dutch famine exhibited DNA 
methylation changes in whole blood during early gestation, but 
not in mid or late gestation (Tobi et al., 2015).  By contrast, in 
pregnant rats CR was found to alter liver expression of the fatty 
acid synthase (Fasn) gene and blood cholesterol levels, without 
detectable changes in DNA methylation such that no effects 
were transferred to the offspring (Nowacka-woszuk et al., 2017; 
2018, 2019). Apparent variance in transgenerational effects of 
DR between studies may be due to organism- or organ-specific 
effects, and/or lack of study of genome-wide DNA methylation. 
In considering the implications of epigenetic modifications, it 
is therefore important to consider that wider gene expression 
changes may be modulated as a result of DNA methylation 
changes.

3.0 Dietary Restriction and Histone Modification/
Remodeling
Histone deacetylation catalyzed by histone deacetylases 
(HDACs) is a widely studied histone modification occurring 
during DR. The four identified classes within this family are: 
class I HDACs (HDAC1, HDAC2, HDAC3, and HDAC8); 
class II HDACs (HDAC4, HDAC5, HDAC6, HDAC7, 
HDAC9, and HDAC10); class III HDACs (SIRT1, SIRT2, 
SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7); and class IV 
HDACs (HDAC11). Class I HDACs are homologous to yeast 
Rpd3 HDAC complex, and class IV HDACs are most closely 
related to class I HDACs. On the other hand, class II HDACs 
possess homologous domains to a yeast enzyme Hda1, and 
class III HDACs are homologous to yeast silent mating type 
information regulation 2 (Sir2).

As for the established relationship between glucose 
restriction and DNA methylation in normal and immortalized 
WI-38 and WI-38/S cells respectively, the roles of HDAC1 
have been similarly investigated (Li et al., 2019). Glucose 
restriction causes a decrease in HDAC1 activity around the 
transcriptional initiation site of human telomerase reverse 
transcriptase (hTERT) in both normal WI-38 and immortalized 
WI-38/S cells, whereas an increase in HDAC1 activity occurs 
around the transcriptional initiation site of p16 promoter region 
in normal WI-38 cells and there is a loss of HDAC1 binding at 
the p16 promoter in immortalized WI-38/S cells. As a result, 
an alteration in gene expression level of both hTERT and 
p16 genes have differential beneficial effects on fates of both 
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Table 1: Different Types and Effects of Dietary Restriction Regimens.

Continue on next page.
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normal and precancerous cells, favoring longevity in normal 
cells and apoptosis in precancerous cells (Li et al., 2019). In 
another notable observation, an increase in Hdac1 gene was 
found in livers of the first two generations of offspring from 
rats subjected to CR during pregnancy, but a decrease was 
observed in the third generation. Moreover, a global histone 
H3 acetylation was also observed in the fetal liver in both the 
first and second generation. Interestingly, while rats do not 
demonstrate transgenerational inheritance of DNA methylation 
changes following CR during pregnancy, it appears that 
prenatal CR can indeed modulate histone modifications with 
transgenerational effects (Nowacka-Woszuk et al., 2018). 

Aging increases the level of HDAC2 in mouse hippocampus, 
with CR able to attenuate this increase. As the level of HDAC2 
correlates with 5-methylcytidine DNA methylation in the 
nucleus of hippocampal cells, it demonstrates that CR can 
prevent age-associated changes in both histone modifications 
and DNA methylation (Chouliaras et al., 2013). As for HDAC3, 
HDAC3 knockout mice exhibit increased bone marrow fat, 
a tissue that produces adiponectin during CR, to control 
metabolic activity of nearby muscle. Thus, HDAC3 may play 
a key role in modulating metabolism of skeletal muscle during 
CR (McGee-Lawrence et al., 2016). Furthermore, fasted mice 
exhibit increased levels of HDAC3 and HDAC4 in the medial 
hypothalamus, and exhibit fewer acetylated histones H3 and 
H4 cells in the ventrolateral subdivision of the ventromedial 
hypothalamus. Thus, HDAC3 and HDAC4 are implicated in 
the modulation of hypothalamic gene expression in response 
to fasting (Funato et al., 2011). Overnight fasting in mice can 
promote cyclic adenine monophosphate signaling to increase 
binding of HDAC4 and HDAC5 to glucose transporter protein 
4 (GLUT4) promoter region, thus decreasing expression of 
GLUT4 mRNA. As such, HDAC4 and HDAC5 may play 
important physiological roles in modulating metabolic 
homeostasis in adipose tissue in response to fasting (Weems 
et al., 2012). Furthermore, HDAC4 has been shown to be 
modulated during fasting conditions in Drosophila. During 
short-term fasting, activation of adipokinetic hormone (AKH) 
pathway will modulate lipid storage by inhibiting liver kinase 
B1 (LKB1) and inducing HDAC4 nuclear localization to alter 
brummer gene expression. However, during prolonged fasting, 

an AKH-independent signaling pathway will downregulate 
LKB1-salt inducible kinase 3 (SIK3) pathway to induce 
lipolysis. As such, the involvement of LKB1-SIK3-HDAC4 
axis in Drosophila to modulate lipid homeostasis during 
fasting is highly dependent on the fasting duration as well as 
the regulatory partners (Choi et al., 2015). A similar study of 
Drosophila during fasting has shown that FOXO activity is 
regulated via this axis (Crunkhorn, 2011). This pathway also 
appears to exist in mice, where inhibition of SIK2 (mouse SIK3 
homologue) induces HDAC4 dephosphorylation to promote 
gluconeogenic gene transcription following glucagon injection 
to mimic fasting (Crunkhorn, 2011; Wang et al., 2011). 
Consistent with these findings, rapid dephosphorylation of class 
IIa HDACs (HDAC4 and HDAC5) occurring after glucagon 
injection drives their translocation to the nucleus and promotes 
binding to the gluconeogenic enzymes glucose-6-phosphatase 
(G6Pase) promoter region in the liver of mice. Moreover, 
once in the nucleus, both HDAC4 and HDAC5 recruit a 
class I HDAC member, HDAC3, to induce the deacetylation 
and activation of FOXO family of transcription factors and 
driving the induction of transcription of gluconeogenesis gene 
(Mihaylova et al., 2011). 

Class III HDACs, or SIRTs, have received special attention 
due to their strong impact on aging and longevity. There are 
seven mammalian isoforms within the SIRT family, categorized 
according to their localization and cognate function. SIRT1, 
SIRT2, and SIRT6 are localized in the nucleus and act 
upon histone proteins or a myriad of proteins that influence 
transcription. SIRT3, SIRT4, and SIRT5 participate in redox 
reactions and metabolic processes in mitochondria. SIRT7 
participate in cell cycle division within the nucleolus (Guarente, 
2007; Sack and Finkel, 2012). Notably, SIRT1 and SIRT2 
have been reported to be localized in the cytosol (Kupis et al., 
2016). 

SIRTs are NAD+-dependent deacetylases which act upon a 
plethora of protein targets and largely on histone terminal tails 
at lysine residues (Mitchell et al., 2018), and may. perform 
ADP-ribosylation for gene silencing and protein acylation 
within the mitochondria (Tanny et al., 1999; Carrico et al., 
2018). As such, activities of SIRTs extend beyond their function 
as histone deacetylases. The first identified SIRT stems from a 
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yeast ortholog, Sir2, which is linked to promotion of longevity. 
Genetic ablation of Sir2 reduces, whereas overexpression 
extends lifespan (Bordone et al., 2007). Subsequent studies 
established the relationship between dSir2 in Drosophila, Sir-
2.1 in Caenorhabditis elegans (C. elegans), and the mammalian 
ortholog SIRT1 in mice with lifespan extension (Tissenbaum 
and Guarente, 2001; Rogina and Helfand, 2004; Satoh et 
al., 2013; Whitaker et al., 2013), highlighting the conserved 
importance of sirtuin in mediating longevity. 

CR induces the activity of sirtuin, such as SIRT1, SIRT2, 
SIRT3, and SIRT6, and represses the activity of SIRT4 in 
mammals (Cohen et al., 2004; Shi et al., 2005; Wang et al., 
2007; Chen et al., 2008; Kanfi et al., 2008). DR has also been 
shown to increase the expression of sirtuins. For instance, 
during IF, SIRT3 expression is increased which in turn leads to 
an increase in neuronal resistance against excitotoxicity (Liu et 
al., 2019). Consequently, sirtuin actions are functionally linked 
to the chromatin, where it exerts its influence over a myriad of 
histone modifications. For example, SIRT1 plays a critical role 
in maintaining the structure of two modes of heterochromatin, 
namely facultative and constitutive. Facultative heterochromatin 
refers to regions of chromatin that become tightly packed in 
response to biological processes like development, and can be 
restored to euchromatic structure through a reversible process. 
Constitutive heterochromatin refers to regions of chromatin 
permanently tightly packed once established, which are often 
irreversible, and which are often found at pericentromeric 
or telomeric regions to maintain integrity of chromosomal 
structure (Trojer and Reinberg, 2007). For example, SIRT1 
mediates the histone deacetylation of histone 4 lysine 16 
acetylation (H4K16Ac) and histone 3 lysine 9 acetylation 
(H3K9Ac) to promote facultative chromatin structure, and it can 
deacetylate linker histone 1 lysine 26 acetylation (H1bK26Ac) 
to form higher order chromosomal structure. SIRT1 activity can 
also influence transcriptional status, such as via mediating the 
loss of histone 3 lysine 79 dimethylation (H3K79me2), a histone 
mark that associates with transcriptional activation (Vaquero 
et al., 2004). Interestingly, some sirtuin family members may 
exert their actions at overlapping targets, such as SIRT2 and 
SIRT6, which can deacetylate histone 3 lysine 9 acetylation 
(H3K9Ac) loci implicated in mitosis and telomeric maintenance 
respectively (Vaquero et al., 2006; Michishita et al., 2008). 

Many studies conclude that there is a causal link between CR 
and sirtuin-mediated downstream effects. While induction of 
sirtuin can promote lifespan extension, this phenomenon may 
either be functionally linked to CR or independent of CR. In 
the case of Drosophila, CR can activate dSir2 via HDAC Rpd3 
to promote lifespan extension (Rogina and Helfand, 2004). On 
the other hand, Sir-2.1 is activated via the insulin-like signaling 
pathway to promote lifespan in C. elegans in a CR-independent 
manner (Tissenbaum and Guarente, 2001). As a result, it is 
paramount to consider the upstream signaling pattern of sirtuin 
to better understand the mechanistic relationship between 
CR and sirtuin. A controversial study has reported that SIRT 
activities may be tissue-specific. For instance, while CR can 
upregulate SIRT1 activity, downregulation is observed in the 
liver of mice (Chen et al., 2008). The notion that the effects of 
sirtuin vary across organs and organisms is evidence of their 
overall complexity. In-depth reviews  of this topic have been 
published previously (Vaquero and Reinberg, 2009; Li et al., 
2011).

Besides histone deacetylation, other types of histone 
modifications can occur as a result of DR. Specifically, CR 
reduces the level of N-terminal histone acetylation at histone 
H4 (NacH4), which upregulates stress-response genes such as 
pyrazinamidase/nicotinamidase 1  (Pnc1), which then regulates 
Sir2 activity and is important for longevity effects (Molina-
Serrano et al., 2016). Histone acetylation is also greatly 

enhanced at the promoter region of mitochondrial activating 
genes in the skeletal muscle of mice fasted for 72 hours. 
Correspondingly, glucose tolerance, body weight, and exercise 
endurance are improved (Miyashita et al., 2019). Furthermore, 
a study of in utero undernutrition (50% CR) in rats during 
the final week of gestation revealed a decrease in histone 3 
lysine 14 acetylation (H3K14Ac) and an increase in H3K9me2 
in skeletal muscle. As a result, Glut4 expression in skeletal 
muscle of adult offspring is repressed (Raychaudhuri et al., 
2008). Similarly, another study of rat offspring showed in utero 
undernutrition during gestation to decrease levels of histone 
3 lysine 4 dimethylation (H3K4me2) and increase histone 3 
lysine 4 trimethylation (H3K4me3) at the insulin growth factor 
1 (IGF-1) locus in the liver. These IUGR offspring can undergo 
rapid catch-up growth and develop higher risks of metabolic 
syndrome and obesity. Interestingly, offspring exhibiting 
this phenomenon have similar epigenetic modification (i.e. 
at the IGF-1 locus in the liver) as those subjected to in utero 
undernutrition, which may contribute to an increment in liver 
and body weight. As such, the mechanistic relationship between 
IUGR and histone methylation can help to predict the risk of 
disease development (Tosh et al., 2010). We have found that 
mice fasted long term for 16 daily or 24 hours on alternate days 
exhibit changes to H3K9me3, leading to robust transcriptomic 
changes and metabolic switching within the cerebellum 
(data yet to be published). Nutritional stress also enhances 
phosphorylation of histone 3 threonine 11 (H3T11) to modulate 
expression of stress-response genes that influence lifespan 
(Oh et al., 2018). Deletion of an ATP-dependent chromatin 
remodeling enzyme complex imitation-switch 2 (ISW2) in 
yeast leads to effects that mirror CR. Yeast with ISW2 deletion 
exhibit increased lifespan, and upregulated stress-response, and 
genotoxic stresses. Overall, ISW2 appears to play important 
roles in mediating CR-induced effects in yeast in a mechanism 
distinct from suppression of TOR signaling during CR (Dang et 
al., 2015). Overall, DR clearly has robust effects on a plethora 
of histone modifications and remodeling, which may then 
regulate subsequent downstream effectors to mediate responses 
commonly reported during DR. 

4.0 Dietary Restriction and microRNAs
miRNA-related research has garnered increasing interest due to 
its implications in aging (Jin Jung and Suh, 2012; Thalyana and 
Slack, 2012). The C. elegan has been a robust model organism 
used in the study of miRNAs during aging due to its relatively 
short lifespan, suitability for mutational studies, and extensive 
knowledge of miRNA gene libraries. Many miRNAs have 
been shown to be upregulated or downregulated to respectively 
promote or reduce lifespan in C. elegans, highlighting the 
relative importance of these molecular players to influence 
aging. Coupled with advancement in sequencing tools, a 
plethora of differential miRNAs have been identified and shown 
to be linked to aging in various tissues and organisms (Ibanez-
Ventoso and Driscoll, 2009; Lencastre et al., 2010).

DR can also elicit differential changes in expression of age-
related miRNAs. In C. elegans, DR induces the expression of 
miR-71 and miR-228.  miR-228 can then repress both defective 
pharynx development (PHA-4) (an ortholog of human FOXA3 
transcription factor) and skinhead (SKN-1) transcription 
factor, whereas miR-71 can repress only PHA-4. As a result, 
the actions of both miRNAs transduce the effects of DR to 
longevity in C. elegans (Sierra et al., 2015). Alterations in 
miRNAs may partially contribute to the neuroprotective effects 
commonly reported during CR. During aging in mice, there is 
an increase in miR-181a-1, miR-30e, and miR-34a in the brain, 
resulting in reduced expression of the Bcl-2 gene involved in 
apoptosis. CR counteracts the age-dependent increase in these 
miRNAs, and correspondingly increases expression of Bcl-
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2, decreasing apoptosis and contributing to neuroprotection 
and neuronal survival (Khanna et al., 2011). miR-98-3p is 
reportedly altered by CR in the rat cerebral cortex, altering both 
HDAC and histone acetyltransferase (HAT) activities (Wood et 
al., 2015). 

CR can increase both global and mitochondrial-specific 
miRNAs in the liver, the most abundant being miR-122, 
which is critical for mitochondrial translation and induction of 
mitochondrial unfolded protein response, thereby improving 
mitochondrial proteotasis (Zhang et al., 2019). Moreover, miR-
125a-5p is upregulated in the mouse liver during CR, preventing 
age-associated decreases. Consequently, the downstream target 
genes (signal transducer and activator of transcription 3 (Stat3), 
caspase 2 (Casp2), and StAR-related lipid transfer domain 
protein 13 (Stard13) are downregulated and may contribute to 
delayed aging (Makwana et al., 2017). 

Deep sequencing has deciphered circulating serum miRNAs 
in young, old, and CR mice. Besides establishing that certain 
miRNAs are associated with aging, novel miRNAs have been 
discovered using this method. Again, CR can oppose age-
related alterations in miRNAs to influence biological pathways 
implicated in aging, such as cellular metabolic pathways, Wnt 
signaling pathway, and apoptosis (Dhahbi et al., 2013). In rhesus 
monkeys, CR induces a robust change in circulating miRNAs, 
some of which are correlated with bodyweight, adiposity, and 
insulin response.  miR-125a-5p was downregulated during 
CR, correlating positively with adiposity and negatively with 
insulin sensitivity (Schneider et al., 2017). miR-451, miR-144, 
miR-18a, and miR-15a are upregulated, whereas miR-181a and 
miR-181b are downregulated in skeletal muscle of old rhesus 
monkey, but following CR, levels of miR-181a are rescued, 
and the age-associated increases in miR-451 and miR-144 are 
prevented. Notably, expression of miRNAs in old monkeys 
subjected to CR resembles that seen in young animals (Mercken 
et al., 2013). Clearly, there is strong evidence that the effects of 
DR on numerous homeostatic mechanisms, critical for delaying 
aging, are tightly linked to the regulation miRNAs.

It is also important to consider whether the miRNA 
processing machinery may be impacted by DR, which 
would certainly impact the profile of downstream changes in 
expression of miRNAs. Dicer has been shown to decline with 
age in C. elegans, and defective Dicer results in decreased 
lifespan and stress tolerance. A similar phenomenon has been 
reported in adipose tissue of mice, with mice in which Dicer 
is deleted displaying hypersensitivity to oxidative stress. In 
both organisms, CR can counteract such phenotypes and play 
a key role in maintaining adipose homeostasis (Mori et al., 
2012). IF has been shown to upregulate RISC components, 
such as Argonaute and GW-182, as well as DRSH-1 (ortholog 
of Drosha in Drosophila) in C. elegans. Upregulation of the 
processing machinery for these miRNAs has the effect of 
modulating the expression of target genes, such as DAF-16, 
the insulin/IGF-1 signaling player, which plays an important 
role in IF-induced longevity in C. elegans. Thus, it is important 
to consider the upstream processing pathway of miRNAs in 
response to DR as a determinant of differential downstream 
production of miRNAs that can effect distinct functions (Kogure 
et al., 2017). 

A recent finding has established an interesting link between 
miRNAs and disease development during DR (Maniyadath et 
al., 2019), in that anticipatory hepatic miRNAs expressed during 
feeding help to counteract a fasting response. The coordinated 
transition between the fed-fast period is mediated by the 
RISC association between miRNAs and the transcriptome in 
the liver, which governs a plethora of homeostatic processes 
(such as metabolic and mitochondrial homeostasis). This 
biological oscillation may become dysregulated during aging, 
and the inability of this oscillator may result in metabolic 

derangements and disease development (Maniyadath et al., 
2019). Furthermore, during mammary tumorigenesis in rats, CR 
can decrease and normalize the expression of miR-200a, which 
is linked to tumor progression (Devlin et al., 2016). These 
findings provide a strong rationale to search for either DR-
related pharmacological mimetics or antagonists of miRNAs to 
protect against disease development. 

5.0 Conclusion
The discovery of DR impacting both health span and lifespan 
across different organisms have driven the renaissance of 
nutrition research in countering aging and its associated 
diseases. However, the nature of DR-induced effects is complex, 
often varied and non-translatable between different organisms. 
As a result, it is highly plausible that DR possess an epigenetic 
milieu, which can help to explain this asymmetric manifestation 
of DR effects. We have outlined evidence that different types of 
DR regimen can distinctly modulate DNA methylation, histone 
modification, histone remodeling, and microRNA activity in 
an extremely complex, but typically beneficial, spatial, and 
temporal-dependent manner. Nevertheless, it seems certain that 
ongoing study of how DR can modulate the epigenomic axis not 
only can provide a better understand of underlying mechanisms, 
but also allow us to predict the differential effects produced by 
DR in different settings and to develop new types of preventive 
and interventional therapy to promote the duration of human 
health and lifespan. 
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