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Stroke is the third leading cause of death and the leading cause of long-term disability, with 
very few effective treatments and limited progress in the effort to search for novel therapeutic 
approaches. The phenomenon that a sublethal ischemic insult induces protection against a 
subsequent severe ischemia, termed ischemic preconditioning (IPC), represents an endogenous 
protective approach against ischemic brain injury, and may direct a breakthrough to future 
therapeutic strategies. It is broadly accepted that new protein synthesis is required for IPC-
mediated long-term neuroprotection; however, their relative regulatory mechanisms are poorly 
understood. In the present review, we summarize genomic-based studies on alterations in gene 
expression and protein synthesis, particularly categorizing potential pathways regulated by IPC. 
We also review the role of epigenetics, an inheritable genetic regulatory mechanism without 
changes in DNA sequence, in IPC-mediated neuroprotection.
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Stroke is the third leading cause of death and the leading
cause of long-term disability, with very few effective 

treatments (Benjamin et al., 2017). The discovery of ischemic 
tolerance may lay the groundwork for future therapeutic 
development (Li et al., 2017). In 1986, Murry et al. reported 
that several episodes of non-injurious ischemia to the dog heart 
led to a 25% reduction in infarct size produced by a subsequent 
sustained occlusion of the coronary artery. They named this 
phenomenon “preconditioning” (Murry et al., 1986). Up to now, 
preconditioning has been observed in multiple animal species 
and across various organs, including the brain (Kitagawa et al., 
1990), liver (Salomao et al., 2012), kidney (Cao et al., 2010), 
spinal cord (Liang et al., 2012), and pancreas (Hogan et al., 
2012), etc. It should be noted that non-lethal ischemia is not 
the only means that confers brain ischemic tolerance. Other 
methods include hypothermia, hypoxia, cortical spreading 
depression, inflammation, oxidative stress, and epilepsy, etc. 
(Stetler et al., 2009). This phenomenon is termed “cross-
conditioning” or “cross-tolerance”, denoting that stimulus of 
one type could provide protection against subsequent injury of 
an entirely different type (Stetler et al., 2014). 

Various experimental models of brain IPC have been applied 
in the preclinical studies. In rodents, cerebral ischemia can 
be primarily induced by either global (forebrain) ischemia 
or focal ischemia models. Two global ischemia models have 
been reported: permanent occlusion of the vertebral arteries 
combined with brief occlusion of bilateral common carotid 
arteries (4VO), and bilateral carotid artery occlusion(2VO) with 
systemic hypotension. In the first study that described IPC in 
the brain in 1990, Kitagawa et al. reported that IPC rendered 
hippocampal neurons tolerant to subsequent lethal ischemia in 
gerbils. Interestingly, although they merely occluded bilateral 
carotid arteries, they actually induced a 4VO global ischemia 
model due to lack in the posterior communicating artery in 
gerbils (Kitagawa et al., 1990). Focal ischemia is typically 
induced by a temporary or permanent occlusion of the middle 
cerebral artery (MCA), because it represents a clinical course of 
prodromal transient ischemic attacks with a subsequent stroke. 
The intraluminal suture MCA occlusion (MCAO) model, 
also known as the so-called “filament model”, is induced by 
inserting a suture filament through the internal carotid artery 
up to the initial segment of the MCA, and removing the suture 
after a period of time, yielding local ischemia/reperfusion (I/R) 
injury (Glazier et al., 1994). The distal MCAO (Morancho et 
al., 2012) usually requires a craniectomy to expose the MCA, 
which can be occluded by electrocoagulation and additional 
transection, resulting in permanent occlusion, or alternatively 
by a microclip, a snare ligature, or a tungsten hook temporarily 
interrupting the blood flow of MCA (Shigeno et al., 1985; 
Buchan et al., 1992; Popa-Wagner et al., 1999). Notably, a 
novel laser-induced photochemical reaction technique enables 
us to make a pinpoint permanent occlusion of a vessel, leaving 
the dura and the skull intact (Dietrich et al., 1987).

Disruption of continuous oxygen and glucose supply can lead 
to neuronal death within a few minutes. The oxygen-glucose 
deprivation (OGD) in cell cultures or tissue slices is the most 
widely used model system mimicking ischemic injury in vitro. 
The OGD method was first established by Goldberg and Choi 
in mixed neocortical cultures (Goldberg and Choi, 1993), and 
Bruer et al., who further modeled in vitro IPC in a neuronal-
enriched culture, observed that neuronal death was significantly 
reduced with sublethal OGD 48-72 h before lethal OGD (Bruer 
et al., 1997). The in vitro models provide a useful tool to study 
in the mechanisms of IPC, which may be generalized into the 
whole-animal model systems.

The two time-windows of protection in IPC are well-
established and thoroughly reviewed (Stetler et al., 2014). The 
rapid window, occurring within minutes after IPC, provides 

only a short-lived (1–2 hours) protection against lethal ischemia 
(Schurr et al., 1986; Perez-Pinzon et al., 1997). Moreover, 
the rapid window seems to be less universal, as no protection 
was observed in the rapid window in a global ischemia model 
in gerbils (Kato et al., 1991). Compared to the rapid window 
of IPC, the delayed window confers long-lasting and more 
robust neuroprotection. The delayed window starts 24 hours 
after IPC, peaking at 48 hours to 72 hours, and lasting up to 1 
week (Chen and Simon, 1997). It is broadly accepted that de 
novo protein synthesis is required for IPC-mediated long-term 
neuroprotection; however, the identification of proteins that are 
necessary, and their relative regulatory mechanisms are poorly 
understood (Barone et al., 1998; Dirnagl et al., 2003; Koch et 
al., 2014).

Phases of IPC-mediated gene expression
To understand the mechanisms underlying the delayed window 
of IPC, we need to map how brief ischemia leads to subsequent 
protein synthesis after IPC. Three distinct phases have been 
described in the process of protein synthesis: the triggering 
phase, the signal transduction phase, and the genomic phase 
(Della-Morte et al., 2012). The triggering phase involves release 
of receptor agonists that bind membrane receptors, mainly 
G protein-coupled receptors. Next, in the signal transduction 
phase, intracellular secondary messengers transduce the signals 
and activate transcription factors. And finally, the last phase, 
the genomic phase, refers to genetic regulation by transcription 
factors. 

The triggering phase
The most important receptor agonist in the triggering phase is 
adenosine, which is a purine nucleoside (Heurteaux et al., 1995; 
Perez-Pinzon et al., 1996). It is released by cultured neurons 
and can be detected as soon as 60 min after OGD (Parkinson 
and Xiong, 2004). The rapid release of adenosine potentiates it 
to mediate neuroprotection in both rapid window and delayed 
window, via different mechanisms, though. Adenosine-
mediated rapid protection is via a decrease in glutamate release 
and inhibition of calcium fluxes, mainly though adenosine A1 
receptor (Heurteaux et al., 1995; Zhou et al., 2004; Shen et al., 
2011). Blockade of A1 receptor, leading to abrogation of IPC-
mediated rapid protection (Perez-Pinzon et al., 1996). On the 
other hand, adenosine-mediated delayed protection is through 
passing on the signals to secondary messengers and pushing the 
story forward to the signal transduction phase and the genomic 
phase.

In addition to adenosine, release of other receptor activators 
and redox signaling are also reported in the triggering phase. 
For example, opioid receptors and nicotinic acetylcholine 
receptors are activated in IPC (Peart et al., 2005; Rehni et 
al., 2008; van Rensburg et al., 2009), and bradykinin and 
erythropoietin are released and confer neuroprotection through 
activation of multiple signaling pathways (Baker, 2005; Ping et 
al., 2005; Noguchi et al., 2007). 

The signal transduction phase
Protein kinase C (PKC) pathway is a central player in the 
signal transduction phase. First, PKC targets the adenosine 
triphosphate (ATP)-sensitive potassium channel, which 
prevents calcium overload in the mitochondrion and slows 
the tricarboxylic acid (TCA) cycle (Critz and Byrne, 1992; 
Domanska-Janik and Zablocka, 1993; Nishi et al., 1999; 
Ivannikov et al., 2010). Consequently, scarce energy resources 
can be conserved, and excessive reactive oxygen species 
(ROS) product can be eliminated. In addition, opening 
ATP-sensitive potassium channels could promote uptake of 
glutamate by astrocytes (Sun et al., 2008), which reduces 
excitotoxicity in ischemia. Second, PKC also upregulates the 
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expression of Sirtuin 1 (SIRT1) through activating nicotinamide 
phosphoribosyltransferase (Morris-Blanco et al., 2014), which 
boosts robust neuroprotection via both epigenetics-dependent 
and -independent mechanisms (Koronowski and Perez-Pinzon, 
2015). 

Other signaling pathways also play a role in the signal 
transduction phase, such as glycogen synthase kinase (GSK) 
3β, mitogen-activated protein kinase (MAPK), c-Jun N-terminal 
kinase (JNK), and Janus kinase/signal transducers and activators 
of transcription (JAK/STAT), etc. (Otani, 2008), and regulate 
a large variety of cellular responses, including growth and 
proliferation, development and differentiation, inflammation, 
and apoptosis.

The genomic phase
The genomic phase is initiated by nuclear translocation 
of transcription factors in response to intracellular signal 
transduction. Of note is that, transcription factors of the activator 
protein-1 family are activated that induce the translation of 
proto-oncogenes such as c-fos, jun B, c-jun and jun D (Truettner 
et al., 2002), and thereby play a critical role in determining 
the fate of cells after ischemic injury. Hundreds of genes are 
changed after IPC, by either upregulation or downregulation. 
This is termed “genomic reprogramming”, which expands the 
previous concept “new protein synthesis” in IPC by stating that 
downregulation of some genes should also be considered in this 
phase. The reprogramming profile following IPC is described 
by either genomic-based or proteomic-based studies and will be 
reviewed in Section 3.

In addition, the important role of epigenetics has recently 
been introduced to the stroke field, based on the finding that 
stroke is associated with increased DNA methylation (Endres 
et al., 2000) and histone acetylation (Meisel et al., 2006). 
However, it remains largely unexplored how epigenetics 

regulates IPC responses; thus, it might be a promising future 
direction for a better understanding of the IPC biology. The 
remodeling of epigenetic marks is discussed in Section 4.

Genomic reprogramming after IPC
General features of genomic reprogramming after IPC
As previously mentioned, there exists a “cross-conditioning” 
phenomenon in the brain. Although multiple stimuli lead to 
similar ischemic tolerant status, the genomic reprogramming 
patterns they trigger are not the same. For example, IPC is 
associated with downregulation in genes related to metabolism 
and channels, while lipopolysaccharide preconditioning altered 
inflammatory patterns along with upregulation in defense genes 
are associated with type I interferons (Stenzel-Poore et al., 
2007). Thus, it is concluded that the nature of preconditioning 
stimulus determines the neuroprotective phenotype and genomic 
reprogramming pattern (Stenzel-Poore et al., 2007; Vartanian et 
al., 2015).

Both IPC and I/R are of ischemic basis, though with different 
degrees in severity. As a result, one may speculate that the 
genomic reprogramming processes triggered by IPC should 
cover similar categories of genes and have similar pattern 
with I/R. Surprisingly, using microarray analysis to investigate 
gene expression after IPC and I/R in mice, Stenzel-Poore et 
al. found no common overlap among the IPC, I/R and IPC 
followed by I/R (IPC+I/R) groups (Stenzel-Poore et al., 2003). 
Moreover, when comparing IPC+I/R with I/R alone, up to 
83% genomic responses were unique to IPC+I/R (Stenzel-
Poore et al., 2007). This number is much lower, about 39%, in 
primary neuronal cultures with 45 min OGD mimicking in vivo 
IPC (Prasad et al., 2012). The difference between in vivo and 
in vitro setting is fairly reasonable, since other than neurons, 
glial cells and microvessel cells are also actively engaged in 
the adaptation to ischemia and/or IPC, and take part in forming 
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an integrated network, termed neurovascular unit (Zhang 
et al., 2012). Collectively, IPC is associated with a unique 
programmed phenotypic alteration and confers a so-called “pro-
survival” phenotype (Kawahara et al., 2004), which results in 
“programmed cell survival” (Gidday, 2006).

Both upregulation and downregulation of genes participate in 
IPC-mediated genomic reprogramming. Multiple studies have 
revealed that I/R prefers upregulation than downregulation, 
and IPC + I/R induces more pronounced downregulation. 
For example, up to 86% genes regulated showed increased 
expression in I/R, while 77% of regulated genes showed 
decreased expression in IPC + I/R (Stenzel-Poore et al., 
2003). IPC alone is associated with a slight trend preferring 
upregulation than downregulation (Stenzel-Poore et al., 2003; 
Stenzel-Poore et al., 2004; Feng et al., 2007).

In  t h i s  s ec t ion ,  we  r ev i ew  the  ove ra l l  genomic 
reprogramming pattern mediated by IPC, particularly focusing 
on genomic-based studies and proteomic-based studies but 
not those studying an individual protein or pathway, and try to 
disclose the commonly shared mechanisms that are necessary 
for IPC (Table 1).

Categories of genes regulated by IPC
1) Transcription factors
Transcription factors are effectors of IPC that directly regulate
gene expression and protein synthesis, and several groups of
transcription factors have been involved in IPC. For example,
silencer factor B and C-jun are regulated in IPC (Dhodda et al.,
2004), and c-Fos, Jun B, and zinc finger Egr family members
are also upregulated (Kawahara et al., 2004). In a study
conducted using a MetaCore’s network algorithm mapping
of pathway analysis, it is revealed that protein expression
changes in IPC are dependent mainly on three proteins:
androgen receptor, HIF-1, and NF-κB (Scornavacca et al.,
2012). Additionally, preconditioning in rat hippocampal slices
significantly increases in transcription activities of Fosl1, Jun D,
Med13 and Nr4a1, peaking around 3 h post IPC (Benardete and
Bergold, 2009).

2) Ion channels and transporters
Ion channels and other transporters are reported to be
downregulated by IPC (Stenzel-Poore et al., 2003; Stenzel-
Poore et al., 2004). IPC significantly decreased potassium
channel Kv1.5 expression in I/R brain in vivo. This finding is
further validated by electrophysiological studies in in vitro rat
cortical neuronal cultures which showed decreased outward
potassium currents and whole-cell conductance after IPC
(30 min OGD) (Stenzel-Poore et al., 2003). Consistently,
downregulation of voltage-dependent anion channel 1 with
proteomic analysis in the CA1 region after global IPC was
reported (Nakajima et al., 2015). In another study (Feng et al.,
2007) applying global ischemia following global IPC, calcium
signaling pathway is among the most significantly modulated
pathways. Since a four-way pairwise comparison was
performed, their findings are more likely to reveal pathways
necessary for IPC-mediated protection. Regrettably, they did
not identify whether and which genes in this pathway were
upregulated or downregulated. In addition, it is worth noting
that they were comparing it with tissues from IPC group vs
IPC + MK801 group, in which MK801 is a non-competitive
NMDA receptor, which could abolish the protection provided
by IPC (Zhang et al., 2009). Similarly, Kawahare et al. reported
downregulation in calcium signaling genes, IP3 kinase and IP3
receptor, mediated by a prior IPC (2 min global ischemia) in
ischemic rat brain (6 min global ischemia) (Kawahara et al.,
2004).

However, Dhodda et al.’s study disagrees with the 
aforementioned results (Dhodda et al., 2004). They performed 

a 10-min MCAO to induce IPC in spontaneously hypertensive 
rats, and total RNA from the MCA territory was subjected to 
GeneChip analysis. They reported upregulation in ion channels, 
including sodium channel scn6a, potassium channel KCNJ13, 
and calcium channel CNGA3 and P2X-associated ATP-
gated channel. Consistently, Benardete and Bergold reported 
upregulated calcium signaling pathway genes after IPC in ex 
vivo hippocampal slices (Benardete and Bergold, 2009).

Acid-sensing ion channels, ASICs, are reported to be 
downregulated after IPC (Pignataro et al., 2011), although no 
whole-genomic studies have revealed a similar phenomenon.

3) Signaling transduction
Upregulation in genes related to MAPK signaling pathway is
well-documented both in vivo (Dhodda et al., 2004; Kawahara
et al., 2004; Feng et al., 2007) and ex vivo (Benardete and
Bergold, 2009). An article also reported an upregulation of other
genes related to signaling transduction, including SMAD-1 and
-7, guanylyl cyclase, and retinoid acid receptor, etc. (Dhodda et
al., 2004). JAK/STAT signaling is reported to increase after IPC
ex vivo in hippocampal slice culture (Benardete and Bergold,
2009), while cyclic adenosine triphosphate signaling and
protein kinase A signaling are decreased in neuronal cultures
after IPC (Prasad et al., 2012).

4) Inflammation
Toll-like receptors (TLR) play a major role in innate immune
response against various insults. A hierarchical analysis revealed
significant downregulation in genes in TLR signaling pathway
(Feng et al., 2007). This is further confirmed by Western blot,
showing decreased expression of cyclooxygenase 2, a TLR4
downstream inflammatory factor. However, in an ex vivo study
using rat hippocampal slice culture subjected to IPC (induced
by 5 min OGD), increased gene expression of TLR signaling
was reported, associated with increased inflammatory factors
interleukin (IL)-1a, IL-1b, IL-6 and TNF as confirmed by
polymerase chain reaction (RT-PCR) (Benardete and Bergold,
2009). Consistently, in primary neuronal cultures, increased
inflammatory responses after IPC were observed (Prasad et al.,
2012).

5) Neuroplasticity
In spontaneously hypertensive rats, IPC was associated with
significant upregulation in neurotrophic factors transforming
growth factor (TGF)-α, TGF-β1, and TGF-β receptor, among
which the increase in TGF-β1 was confirmed by RT-PCR
(Dhodda et al., 2004). Feng et al. (Feng et al., 2007) dug
deeper by focusing on the expression of bone morphogenetic
protein (BMP)-7, a member of TGF-β superfamily with unique
neuroprotective and regenerative effects (Harvey et al., 2005;
Heinonen et al., 2014). They confirmed upregulation in BMP-7
in IPC with RT-PCR, Western blot and immunohistochemistry
in the dentate gyrus. Increase in TGF-β pathway genes was
also observed ex vivo in hippocampal slice culture after IPC,
together with genes related to other neurotrophic pathways, like
Wnt, ErbB, and vascular endothelial growth factor signaling
(Benardete and Bergold, 2009). In another study with in
vitro neuronal culture, IPC increased cell cycle genes and
neurotrophic genes (Prasad et al., 2012). Naylor et al. confirmed
that IPC alone could increase in a panel of growth factors,
including insulin-like growth factor, fibroblast growth factor,
TGF-β, epithelial growth factor and platelet-derived growth
factor-A (Naylor et al., 2005).

6) Metabolism and ribosome pathway
In Stenzel-Poore’s study (Stenzel-Poore et al., 2003), the
authors reported significant decrease in metabolic gene
expression; interestingly, they further interpreted this feature as
a stimulation to hibernation, in which a suppression of energy
use contributes to neuroprotection (Drew et al., 2001). Their
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findings agree with a later study using proteomic analysis 
(Scornavacca et al., 2012). While Feng et al.’s study, using a 
four-way pairwise comparison, elicited opposite results. They 
reported a significant increase in genes related to ribosome 
pathway, oxidative phosphorylation and protein synthesis 
(Feng et al., 2007). They also suggested that activated 
metabolism and ribosome pathway could facilitate the recovery 
protein processing machinery after injurious ischemia. 
Consistently, an ex vivo study inducing IPC in hippocampal 
slice culture reported increased genes related to glycolysis and 
gluconeogenesis (Benardete and Bergold, 2009). The above 
studies seem controversial, but in fact, a possible explanation 
for this discrepancy is the difference in treatment groups. In 
the first two studies, the authors compared IPC + I/R group 
versus I/R alone group, while in the third and fourth studies, the 
comparison was between IPC alone versus control or IPC alone 
versus IPC + MK801 group, without injurious ischemia.

However, one article reported opposite effect of IPC using 
proteomic analysis with two-dimensional electrophoresis, 
showing decreased mitochondrial aconitase, an enzyme related 
to TCA cycle, in CA1 region after IPC induced by 3 min global 
ischemia (Nakajima et al., 2015). A shortcoming of this study 
is that there was no entire pathway-based analysis, and change 
in one single protein can hardly reflect the general trend of one 
pathway.

7) Heat shock proteins (HSPs)
HSPs are important stress sensors in the cellular system.
Increased HSP expression by IPC is reported in multiples
studies (Stenzel-Poore et al., 2003; Dhodda et al., 2004;
Kawahara et al., 2004). To specify, after 15 min MCAO as IPC
in mice, Hsp70 increased at 24 h, and Hspb2 at 72 h (Stenzel-
Poore et al., 2003). IPC also contributed to an additional
increase in Hsp70, 105 and 10 by I/R after 24 h (Stenzel-
Poore et al., 2003). In a global IPC model, the only upregulated
Hsp mRNA after IPC is Hsp70 (Kawahara et al., 2004). In
spontaneously hypertensive rats, IPC (10 min MCAO) induced
increase in Hsp70, 27, 90, 10 and 60 as confirmed by RT-PCR
(Dhodda et al., 2004), and the increase in HSP70 was then
validated by Western blot and immunohistochemistry in vivo.
The upregulation of HSP70 after IPC was also reported by
using proteomic analysis by two-dimensional electrophoresis
coupled to liquid chromatography-tandem mass spectrometry
(Scornavacca et al., 2012).

8) Redox signaling
Although it was mentioned that genes related to oxidative stress
were regulated by IPC, Western blot reveals no significant
changes in the expression of superoxide dismutase, an ROS
scavenger (Scornavacca et al., 2012). More glutathione
S-transferase expression was observed in CA1 than CA3/
dentate gyrus region, but no significant changes between the
sham and IPC groups (Nakajima et al., 2015). Although some
sporadic studies did elicit increased antioxidants induced by
IPC both in vivo and in vitro (Dozza et al., 2004; Holtzclaw
et al., 2004; Danielisova et al., 2005; Shokeir et al., 2014), no
proteomic or genomic-based studies reported the indispensable
role of redox signaling.

Given that buffering oxidative stress abolished IPC-mediated 
protection (Puisieux et al., 2004; Narayanan et al., 2017), a 
couple groups have reported that the mild oxidative stress in 
preconditioning initiates redox signaling and activates nuclear 
factor erythroid 2-related factor 2 (Nrf2), a master transcription 
factor the upregulates anti-oxidative enzymes, in astrocytes (Bell 
et al., 2011; Narayanan et al., 2017). In support, our group also 
found an important role of Nrf2 after IPC. We found the nuclear 
translocation of Nrf2 after IPC and validated the indispensable 
role of Nrf2 for IPC (Yang et al., 2016a).

Limitations and future directions
Despite the progress in genomic-based and proteomic-based 
techniques in the past decade, all the above studies failed to 
make a breakthrough to reveal a common “tolerasome” or 
to provide clues in finding biomarkers for IPC (Meller and 
Simon, 2013; Koch et al., 2014). Besides different models and 
different comparison in different studies, most studies only 
applied correlation analysis, without further determination 
on the causal relationship. In addition, the sample sizes may 
be too small which lowered the power in these studies. A 
third limitation is lack of cellular specificity, since samples 
from most in vivo studies were extracted from whole tissue. 
Last but not least, gene regulation at an epigenetic level is 
largely ignored. Epigenetics regulates the transcriptional 
potential through modifying the accessibility of DNA to the 
transcriptional machinery. In the next section, we are going to 
review epigenetic reprogramming in IPC.

Remodeling of epigenetic marks after IPC
During the past decade, there has been an emerging role of 
epigenetics in regulating pathologic processes and outcome 
of stroke. Nevertheless, fewer studies focus on the role of 
epigenetics in IPC. How IPC alters epigenetic reprogramming is 
still at a start-up stage and is attracting more and more attention. 
Mechanisms underlying epigenetic modulation on DNA 
expression include noncoding RNAs -- typically microRNAs 
(miRNAs) (Saugstad, 2010), global SUMOylation (SUMO: 
small ubiquitin-like modifier) (Lee et al., 2009), direct DNA 
modification by methylation, and histone protein modifications 
(Schweizer et al., 2015).

miRNAs
In an elegant study conducted by Lusardi et al. (Lusardi et al., 
2010), miRNA array was performed in mouse cortex tissues 
following IPC (15 min MCAO) or I/R (60 min MCAO). IPC 
+ I/R upregulated ~200 miRNAs, and downregulated ~100
miRNAs. However, I/R alone only triggered ~100 miRNA
downregulation, suggesting a unique and robust miRNA
response to IPC rather than I/R. Further target RNA analysis
on those downregulated miRNAs revealed a common target,
methyl CpG binding protein 2 (MeCP2), which binds to
methylated DNA and helps with gene silencing. They also
confirmed that IPC increased MeCP2 expression, and MeCP2
knockout abolished IPC-mediated neuroprotection.

Targeting pathways were also explored, though roughly. 
Dharap and Vemuganti profiled miRNAs in the cerebral cortices 
from spontaneously hypertensive rats after IPC and reported a 
quickly reactive miRNAome (Dharap and Vemuganti, 2010). 
Among 51 miRNAs that were altered, 26 were upregulated 
and 25 were downregulated. They further performed KEGG 
pathway analysis on their target proteins and found that MAPK 
pathway and mTOR pathway were top the 2 upregulated 
proteins, and Wnt pathway and GnRH pathway were the 
top 2 downregulated proteins. Lee et al. performed miRNA 
profiling covering a total of 360 miRNAs, and found selective 
upregulation of two miRNA families, miR-200 and miR-182, 3 
hours after IPC effects (Lee et al., 2010b). They then transfected 
some of them and revealed that prolyl hydroxylase 2 and HIF-1 
pathways had the best neuroprotective effects.

Global SUMOylation
SUMOylation is correlated with transcriptional repression via 
modulating diverse chromatin enzymes, chromatin associated 
proteins, and promoter specific transcription factors (Ouyang 
and Gill, 2009). Elevated SUMOylation was protective against 
focal ischemia mouse brains (Lee et al., 2009). In the setting 
of IPC, elevated SUMO-1 conjugation levels was observed. 
Primary cortical neurons were more resistant to OGD when 
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transfected with SUMO-1 or SUMO-2, and SUMO-1-siRNA 
transfection attenuated IPC-mediated protection (Lee et al., 
2009).

DNA methylation
In general, DNA methylation at the promoter region results 
in repression in gene expression, and DNA hypomethylation 
is associated with gene transcription. DNA methylation is 
mediated by DNA methyltransferases (DNMTs). Both I/R 
in vivo and OGD in vitro led to increased DNA methylation 
(Endres et al., 2000; Hu et al., 2006), and a lower level, but 
not absence, of DNMT1 is protective against ischemic injury, 
associated with decreased DNA methylation (Endres et al., 
2001). By contrast, in a study describing dynamics of overall 
DNA methylation after I/R, Meller et al. reported significantly 
decreased methylated DNA by up to 80% compared to sham, 
and IPC decreased methylated DNA by~50% (Meller et 
al., 2015). A possible reason for this discrepancy may lie in 
their different methodologies. In Endres et al.’s study, DNA 
methylation was measured by incorporating [3H]-methyl 
groups into the genomic DNA, which reflects dynamic DNA 
methylation after I/R-induced DNA injury, while in Meller et 
al.’s study, methylated DNA was measured by a pull-down of 
the methyl group and agarose gel analysis, which provides a 
snapshot of present methylated DNA. Taken together, it can 
be speculated that I/R-induced DNA damage leads to decrease 
in methylated DNA which can be attenuated by IPC; DNA 
remethylation process occurs after I/R.

A number of genes can be regulated by DNA methylation 
in IPC. The increase of NKCC1, an Na+/K+ co-transporter 
after I/R correlated to decreased methylation of the promoter 
(Lee et al., 2010a). Decrease in estrogen receptor methylation 
led to increased estrogen receptor expression following 
ischemia (Westberry et al., 2008; Wilson and Westberry, 
2009). Moreover, IPC induced methylation to the promoter of 
thrombospondin 1, an anti-angiogenic factor (Hu et al., 2006; 
Lawler and Lawler, 2012). Nevertheless, detailed information 
and the causal relationship between DNA methylation and IPC 
remain largely unexplored.

Histone modification
Histone proteins include histone 2A, 2B, 3 and 4. They 
participate in forming nucleosomes, which blocks the access 
of transcription factors to DNA. Histones can be modulated by 
acetylation, phosphorylation, methylation, and ubiquitination.

1) Histone acetylation
Acetylation of histones is the most extensively studied type of
epigenetics, not in IPC settings, though. In general, acetylation
of histones opens the chromatin configuration and allows
transcription factors to bind DNA, and deacetylation of histones
is associated with repression in gene expression. Histone
acetylation is mediated by histone deacetylases (HDACs).
Class I and II HDACs are Zn2+-dependent, and class III
HDACs, otherwise known as Sirtuins, are nicotinamide adenine
dinucleotide (NAD)+-dependent.

HDAC inhibitors are powerful tools to assess the role of 
HDACs. Class I and II HDAC inhibitors selectively inhibit 
the zinc hydrolase domain (Bradner et al., 2010). Multiples 
studies demonstrated neuroprotection against stroke by class 
I and II HDAC inhibitors via modulating oxidative stress, 
DNA damage, and inflammation (Qi et al., 2004; Ren et al., 
2004; Faraco et al., 2006; Kim et al., 2007). The critical role 
of HDAC3, a member of HDAC class I, was also confirmed in 
IPC both in vivo and in vitro, possibly via induction of Hspa1a, 
Bcl2l1, and Prdx2 expression (Yang et al., 2016b).

NAD+ is a vital oxidizing agent of the glycolytic and TCA 
cycle. Being NAD+ sensors in the cellular system, Sirtuins, 
especially SIRT1, are required for IPC. In both in vivo and ex 

vivo studies, SIRT1 activities were increased following IPC, 
and blockade SIRT1 abrogated IPC-mediated neuroprotection 
(Raval et al., 2006; Della-Morte et al., 2009; Koronowski et 
al., 2015). However, one should be aware of SIRT1’s diverse 
targets, including both histone and non-histone proteins. 
For example, SIRT1 can either deacetylate MeCP2 to elicit 
neuroprotection (Zocchi and Sassone-Corsi, 2012), or function 
indirectly via transcription factors, transcriptional co-factors, or 
nuclear receptors (Zhang et al., 2011).

2) Histone phosphorylation
The best-known function of histone phosphorylation occurs
when cells respond to DNA damage. Histone phosphorylation
is associated with DNA repair, cell cycle and mitosis (Rossetto
et al., 2012). Activation of the 5’-adenosine monophosphate-
activated protein kinase signaling pathway, a master pathway
regulating cellular energy homeostasis, is the major mechanism
that phosphorylates histone. Bungard et al. reported that stress
induced histone 2B phosphorylation at S36 residue; S36A
decreased cell viability under stress conditions (Bungard et al.,
2010). There is no report on histone phosphorylation in IPC so
far.

3) Histone mono-ubiquitination
Mono-ubiquitination of histone 2A and 2B contributes to
repression of genes that consume ATP. for example, voltage-
gated potassium channels, a key factor during IPC (Stapels et
al., 2010). Such mono-ubiquitination is mediated by polycomb
group proteins (PcG). PcG decreased potassium currents in
cultured neuronal cells, and PcG knockdown precluded the
induction of IPC. Some researchers believe PcG is one of
the central modulators of IPC given its diverse target genes
including those involved in electron and glucose transporters
(Brand and Ratan, 2013).

Conclusion
Over the past several decades since the discovery of IPC, 
piles of evidence have demonstrated the generality of this 
phenomenon across multiple species and organs that can 
be induced by diverse in vivo and in vitro models. This has 
largely expanded the broadness of our understanding in 
IPC. Disappointingly, our understanding in the depth of IPC 
mechanisms, such as which pathways, proteins, molecules, and 
genetic modulation account for IPC-endowed neuroprotection, 
remains superficial. Besides the two time-windows and 
the requirement of genomic reprogramming for long-term 
neuroprotection, no breakthrough has been made during the 
past two decades, despite extensive work on genomic-based 
and proteomic-based studies. Epigenetics in the stroke field has 
gotten increasingly hot, while its role in IPC remains poorly 
understood. Since drugs involving epigenetic regulation have 
already been put into clinical trials (Hwang et al., 2013), we 
expect that exploration on epigenetic regulation in IPC may 
lead to a new era for stroke and IPC research. The effects of 
IPC might be an integrated consequence from a complicated 
network, whose components actively interact with one 
another. Apparently, we are currently at the very beginning 
in understanding the integrated mechanisms of the genetic 
regulation in IPC. We still have a long way to go before 
we fully understand the biology of IPC, and, what is more 
important, bring it to clinic to fight against stroke. 
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