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Mitochondrial dynamics and preconditioning in white 
matter
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Mechanisms of ischemic preconditioning have been extensively studied in gray matter. However, 
an ischemic episode affects both the gray matter (GM) and white matter (WM) portions of the 
brain. Inhibition of mitochondrial fission is one of the mechanisms of preconditioning neuronal 
cell bodies against ischemia. Although axons are anatomical extensions of neuronal cell bodies, 
injury mechanisms differ between GM and WM. Indeed, axonal dysfunction is responsible for 
much of the disability associated with clinical deficits observed after stroke; however, the signaling 
process underlying preconditioning remains unexplored in axons. Using mouse optic nerve, 
which is a pure isolated WM tract, we show that mitochondria in myelinated axons undergo rapid 
and profuse fission during oxygen glucose deprivation (OGD) that is mediated by translocation 
of cytoplasmic Dynamin Related Protein-1 (Drp-1) to mitochondria. OGD-induced mitochondrial 
fission correlates with reduced mitochondrial motility and loss of axon function. Mitochondrial 
fragmentation and loss of motility become permanent during the recovery period. Inhibiting 
mitochondrial fission by administering mitochondrial division inhibitor-1 (Mdivi-1) during OGD 
preserves mitochondrial shape and motility and promotes axon function recovery. In contrast, 
preconditioning WM by applying Mdivi-1 only before OGD fails to conserve mitochondrial shape 
or motility and fails to benefit axon function. Our findings suggest that inhibition of mitochondrial 
fission during ischemia promotes axon function recovery, but is not sufficient to precondition WM 
against ischemia. These results raise caution in that approaches to preconditioning neuronal cell 
bodies may not successfully translate into functional improvement following ischemia. 
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Ischemic preconditioning is an endogenous neuroprotective 
mechanism in which the brain protects itself against future 

injury by adapting to low doses of an insult (Cadet et al., 2009; 
Dirnagl et al., 2009). Clinical studies indicate that patients 
who suffer from a transient ischemic attack show improved 
clinical recovery after a stroke (Moncayo et al., 2000; Wegener 
et al., 2004). Therefore, elucidating the complex molecular 
mechanisms underlying preconditioning is a critical challenge 
in stroke research (Gidday, 2006). Recent work has shown 
that mitochondria actively participate in the preconditioning 
signaling pathway by generating reactive oxygen species 
(ROS) (Kowaltowski et al., 2000; McLeod et al., 2005; Hirata 
et al., 2011; Gundimeda et al., 2012) or by inhibiting mito-
KATP channels (Auchampach et al., 1992; Yao and Gross, 
1993; Jabůrek et al., 1998; Garlid et al., 2003). Mitochondria 
are dynamic organelles that undergo fission, fusion, and 
intracellular transport while conducting multiple physiological 
functions including the generation of ATP through oxidative 
phosphorylation, the buffering of cytosolic Ca2+, and the 
generation of ROS (van der Bliek et al., 2017). In normal 
healthy cells, fission and fusion are balanced to maintain 
mitochondria within a certain range of length appropriate for the 
maintenance of cellular physiology (Flippo and Strack, 2017). 
In response to injury, mitochondria undergo fragmentation 
into small dysfunctional units that in turn generate excessive 
amounts of ROS, causing cellular damage (Reddy et al., 2012; 
Balog et al., 2016; Golpich et al., 2017; Wu et al., 2017). 
Fission of mitochondria is mediated by Dynamin Reactive 
Protein-1 (Drp-1). Drp-1 is recruited to the mitochondrial outer 
membrane by a variety of adaptor proteins and then aggregates 
and forms oligomers in the shape of a ring at the site of future 
fission along mitochondria (Hatch et al., 2014; Flippo and 
Strack, 2017). Upon contraction of this ring formation, Drp-
1 divides the mitochondrion into two separate mitochondria. 
Therefore, inhibition of Drp-1 activity has been of interest 
to attenuate or to prevent mitochondrial injury. In addition 
to genetic modifications, which produce serious effects on 
development and longevity (Ishihara et al., 2009; Wakabayashi 
et al., 2009), pharmacological blockade of Drp-1 with Mdivi-1, 
which is a blood-brain barrier-permeable inhibitor, provides a 
powerful tool with greater spatiotemporal control that can be 
acutely monitored and visualized.

A stroke affects both the gray matter (GM) and white 
matter (WM) portions of the brain (Mohr 2011).  Faithful axon 
conduction is crucial for signaling among neuronal cell bodies 
to connect GM and WM in order to achieve and maintain proper 
function. Despite the anatomical perception that myelinated 
axons are a natural extension of neurons, axons are independent 
of their cell bodies in their supply of energy, metabolism, and 
injury mechanisms. It is important to note that approaches 
for neuronal protection fail to improve, or even impede, axon 
function recovery after ischemia (Tekkök et al., 2007; Baltan, 
2009, 2012, 2014a). Inhibition of mitochondrial fission has been 
shown to induce preconditioning tolerance to neurons in vivo 
(Park et al., 2011b; Xie et al., 2013; Zhang et al., 2013a; Zuo et 
al., 2014, 2016; Jin et al., 2016; Kim et al., 2016; Deryagin et 
al., 2017) and in vitro (Correia et al., 2010; Wang et al., 2014), 
which raises the question as to whether or not preservation of 
mitochondria can precondition WM against ischemic injury.

Rodent brains contain only 10% WM by volume, as opposed 
to the human brain, which contains a significantly higher 
percentage (50% by volume) (Zhang and Sejnowski, 2000). 
Thus, the response to ischemia is dominated by neuronal injury 
in rodent brain. However, the use of optic nerve, which is a 
pure WM tract, avoids this impediment and provides a platform 
to test WM injury mechanisms in isolation. We hypothesized 
that blockade of mitochondrial fission during oxygen glucose 
deprivation (OGD) with Mdivi-1 will prevent mitochondrial 

fragmentation and preserve mitochondrial motility, thereby 
promoting axon function recovery and mediating ischemic 
tolerance in WM.  We developed a novel technique for live 
imaging of axonal mitochondria to monitor mitochondrial 
fission and motility using optic nerves obtained from Thy-
1 mito CFP (+) mice. Together with direct quantification of 
axon function, we aimed to reveal the interaction between 
mitochondrial dynamics and preconditioning in WM.  

MATERIALS AND METHODS
Animals and Chemicals
All experimental procedures were approved by The Institutional 
Animal Care and Use Committee of the Cleveland Clinic.  
Mouse optic nerves (MONs) were obtained from C57BL/6J 
mice and from mice expressing mitochondrially-targeted cyan 
fluorescent protein (CFP) on a C57BL/6 background (Thy-
1 mito-CFP (+); (Misgeld et al., 2007)). Thy-1 mito-CFP (+) 
mice were originally obtained at the University of Washington 
and were later relocated to and bred at the Cleveland Clinic 
Foundation. Mitochondrial division inhibitor-1 (Mdivi-1) was 
purchased from Selleck Chemicals (#S7162, Houston, TX). The 
sources for other chemicals used have been described in detail 
previously (Baltan et al., 2008; Stahon et al., 2016). 

Optic Nerve Preparation, Electrophysiological Recordings, 
and Oxygen Glucose Deprivation
Following CO2 asphyxiation, MONs were obtained from 
C57BL/6J or Thy-1 mito-CFP (+) mice at 2-3 months of 
age. MONs were gently cleared off from their dural sheaths 
and transferred to a Haas-Top perfusion chamber (Harvard 
Apparatus) and superfused with artificial cerebrospinal fluid 
(ACSF) containing the following (in mmol/L):  124 NaCl, 3 
KCl, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, 23 NaHCO3, and 10 
glucose. MONs were allowed to equilibrate for at least 15 
min in the recording chamber in normal ACSF bubbled with a 
95% O2/5% CO2 mixture. All electrophysiological recordings 
were performed at 37°C. Suction electrodes back-filled with 
glucose-free ACSF were used for stimulation and for recording 
compound action potentials (CAPs). The stimulation electrode 
was connected to a stimulus isolation unit (A365R Stimulus 
isolator; WPI, Sarasota, FL) and elicited CAPs at 30 s intervals. 
Stimulus pulse (30 μs duration) strength was adjusted to 
evoke the maximum CAP possible and then increased another 
25% for supramaximal stimulation. The recording electrode 
was connected to an Axoclamp 900A amplifier (Molecular 
Devices, San Jose, CA) and the signal was amplified 20 or 50 
times, filtered at 3 kHz (SR560, Stanford Research Systems, 
Sunnyvale, CA). OGD was induced as previously described 
(Baltan et al., 2008, 2010, 2011; Murphy et al., 2014; Stahon 
et al., 2016) by switching to glucose-free ACSF (replaced with 
equimolar sucrose to maintain osmolarity) and a gas mixture 
containing 95% N2/5% CO2. OGD was applied for 60 min, 
glucose-containing ACSF and O2 were restored, and CAPs were 
recorded for up to 5 h after the end of OGD. MONs from Thy-1 
mito-CFP (+) mice were collected and fixed for subsequent CFP 
(+) mitochondrial analysis (see below). 

Time-Lapse Live Imaging of Mitochondrial Fission and 
Motility
These experiments were performed exclusively on MONs 
obtained from Thy-1 mito-CFP (+) mice. After dissection, 
MONs were transferred to a C-Stim CMC Microscope Chamber 
System (IonOptix, Westwood, MA) attached to an in-line heater 
(Cell MicroControls MTCII temperature controller and heater; 
IonOptix, Westwood, MA) to keep the chamber at 37°C. The 
MONs were superfused with ACSF bubbled with a 95% O2/5% 
CO2 mixture at a flow rate of 3 ml/min. OGD was induced by 
switching to glucose-free ACSF saturated with 95% N2/5% CO2. 
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To determine mitochondrial motility in both the anterograde and 
retrograde directions, Thy-1 mito-CFP (+) MONs were imaged 
every 1.5 s at 1024 x 1024 resolution from a single microscopic 
field using an inverted confocal microscope (Leica DMI6000, 
Buffalo Grove, IL, 40x water immersion objective, numerical 
aperture, 0.80). The imaging area was set to contain at least 
three axons (confirmed during analysis) in which there would 
be at least ten mitochondria moving in either direction. Time 
lapse images were captured during the last 5 min of baseline 
(20 min), during OGD (60 min), and during the recovery period 
(20 min). Imaging parameters were chosen and set to minimize 
photobleaching. Control experiments consisting of imaging 
MONs using the same parameters without OGD showed less 
than 10% CFP fluorescent loss over the same duration (data 
not shown). Mitochondrial motility, direction, and changes 
in mitochondrial size were analyzed using ImageJ software 
combined with the KymoTool Box plugin (Zala et al., 2013). 
Stationary and motile mitochondria, as well as the direction 
of motility, were identified and kymographs were generated in 
order to measure the anterograde and retrograde movements 
during baseline, OGD (60 min), and recovery.

Confocal Imaging and Pixel Intensity Analysis of Thy-1 mito-
CFP (+) Mice
As previously described (Baltan et al., 2011; Baltan, 2012, 
2014a; Murphy et al., 2014; Stahon et al., 2016), expression 
of CFP was imaged using a Leica DMI6000 inverted confocal 
laser-scanning microscope using Thy-1 mito-CFP (+) mice. 
Two to three adjacent sections for each MON were imaged with 
the wavelength set at 456 nm. A total of 10 optical sections of 
1 μm thickness at 512 × 512 pixel size were collected in the 
z-axis from a single microscopic field using the 40x objective 
lens (HCX APO, water immersion; numerical aperture, 0.80) 
under fixed gain, laser power, pinhole, and photomultiplier tube 
settings. To compare pixel intensity, all sections were processed 
concurrently with Leica imaging software (LAS-AF version 2.7) 
using a single channel. The z-stacks were projected into a single 
plane image before analysis and assessment of pixel intensity. 

Western blots
Mitochondria-rich lysate fractions and cytosol fractions were 
prepared from MON samples (two or three pairs; modified from 
(Disatnik et al., 2013)). MON samples were homogenized in 
75 µL of isolation buffer (300 mM sucrose, 10 mM HEPES, 
2 mM EGTA, pH 7.2, at 4°C) with protease inhibitor and 
phosphatase inhibitor cocktails (Sigma-Aldrich, St. Louis, 
MO). After centrifugation at 950 g for 10 min, the supernatant 
was collected and further spun at 10,000 g for 20 minutes at 
4°C. The final pellets suspended in lysis buffer were used as the 
mitochondrial-rich lysate fractions and the supernatants were 
used as cytosol fractions. Protein concentration was estimated 
using a BCA protein assay kit (Thermo Scientific, Rockford, 
IL). Protein lysates were prepared in 4x Laemmli sample buffer 
(Bio-Rad, Hercules, CA) and 2-mercaptoethanol at a ratio of 
10:1 and then incubated at 95ºC for 10 minutes. Equal amounts 
of protein were loaded into each well (10-22 µg) of stain-
free 4-20% Mini-Protean TGX gels (Bio-Rad, Hercules, CA). 
After gel electrophoresis, protein samples were transferred 
to nitrocellulose membranes (Bio-Rad, Hercules, CA). Blots 
were blocked in 5% dry milk in TBS-Tween (TBS-T; 0.1%) 
for one hour at room temperature. Both primary (mouse Drp-1 
#611112, BD Biosciences) and secondary antibodies were made 
in blocking buffer. Primary antibody was incubated overnight 
at 4ºC at 1:500.  After three washes in TBS-T for 5 min, blots 
were incubated in secondary antibodies (goat anti-mouse HRP, 
Jackson Immunoresearch) at room temperature for 2 hours. 
Chemiluminescence was detected using Clarity Western ECL 
substrate (Bio-Rad, Hercules, CA), imaged using a Bio-Rad 

Chemidoc MP, and analyzed using Imagelab software version 
4.1 (Bio-Rad, Hercules, CA) for volumetric analysis of protein 
expression. Drp-1 levels were normalized to voltage-dependent 
anion channel (VDAC, # 10866-1-AP, Protein Tech Group Inc.) 
antibody levels in mitochondria-rich fractions and to β-actin 
(A5441, Sigma-Aldrich) in cytosol fractions, respectively.

Data Acquisition and Statistical Analysis
Optic nerve function was monitored quantitatively as the area 
under the supramaximal CAP using Clampfit (version 10.2, 
Molecular Devices, CA). CAP area is a complex spatiotemporal 
summation of action potentials from individual axons (Stys et 
al., 1991; Baltan et al., 2008, 2011; Stahon et al., 2016). For 
comparing CAP area among experimental groups, data from 
each group of experiments were pooled and CAP areas were 
normalized to the baseline conditions. Data were normalized 
by setting the mean of initial baseline values (measured over 15 
min) to a value of 1 as previously described (Baltan et al., 2008, 
2011; Stahon et al., 2016).  All data are presented as mean ± 
SEM. Graphpad Prism (ver. 4.0c, La Jolla, CA) was used for 
statistical analysis. For sample sets containing more than two 
groups, one-way ANOVA followed by post hoc Bonferroni’s 
test for between-group comparisons was used. The p values and 
significance values are indicated individually for each figure 
in the text. The n values indicate the number of optic nerves 
and the numbers in brackets denote mitochondria followed by 
experiment numbers in histograms quantifying mitochondrial 
motility.

RESULTS
Drp-1 regulates ischemia-induced mitochondrial fission
Mitochondrial length is determined by the balance between 
the rates of mitochondrial fission and fusion and is important 
for controlling the spatiotemporal properties of mitochondrial 
responses during physiological and pathophysiological 
processes (Szabadkai and Duchen, 2008). Because ischemia 
caused extensive fission and fragmentation, leading to smaller-
sized mitochondria that correlated with irreversible axon 
function loss (Baltan et al., 2011), we reasoned that preventing 
mitochondrial fission could maintain mitochondrial size, shape, 
and morphology, and also precondition WM as characterized 
by improved axon function recovery. Drp-1, which is a 
mitochondrial fission protein, is critical for mitochondrial 
division, size, and shape (Reddy et al., 2011) and is regulated 
with age in WM (Stahon et al., 2016). Mdivi-1 is a selective 
inhibitor of Drp-1 and has been shown to confer protective 
effects in heart, kidney, retinal ganglion cells, spinal cord, and 
cerebral ischemia reperfusion models (Brooks et al., 2009; 
Ong et al., 2010; Park et al., 2011a; Grohm et al., 2012; Liu et 
al., 2015). Mdivi-1 is reported to suppress the translocation of 
cytosolic Drp-1 onto mitochondria to prevent fission (Kim et al., 
2017; Valenti et al., 2017). To ensure that Mdivi-1 acted on Drp-
1 and conserved mitochondrial size in myelinated axons of optic 
nerve, we quantified the protein levels of Drp-1 in the cytosolic 
(Figure 1A and B, left panels) and mitochondrial (Figure 1A 
and B, right panels) fractions. OGD suppressed Drp-1 in the 
cytosolic fraction (0.7 ± 0.04%, n = 4) because it is translocated 
to the mitochondrial fraction (2.0 ± 0.4%, n = 6; control 1.0 ± 
0.0, n = 7, p < 0.05, one-way ANOVA, Bonferroni’s post hoc 
test), while Mdivi-1 (50 µM) application reversed these effects 
of OGD. Cytosolic Drp-1 levels increased to 1.55 ± 0.3%, (n = 
3, p < 0.05, one-way ANOVA, Bonferroni’s post hoc test) and 
mitochondrial Drp-1 levels dropped to 0.94 ± 0.2%, (n = 6, p < 
0.05, one-way ANOVA, Bonferroni’s post hoc test) in MONs 
pre-treated with Mdivi-1. Consequently, Mdivi-1 application 
preserved mitochondrial size and CFP (+) fluorescence (Figure 
1C, Mdivi-1 throughout). In control optic nerves obtained 
from Thy-1 mito-CFP (+) mice, axonal mitochondria displayed 
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elongated tubular CFP (+) structures (Figure 1C, Control). 
After OGD, as reported previously (Baltan et al., 2011), there 
was a dramatic reduction in CFP fluorescence and remaining 
mitochondria presented a punctuate morphology (Figure 1C, 
OGD) consistent with ischemia-induced fission. Pretreatment 
of MONs with Mdivi-1 preserved CFP pixel intensity and 
mitochondrial morphology (Figure 1C, Mdivi-1 throughout), 
confirming the principal mode of action of Mdivi-1 inhibition 
of mitochondrial fission in myelinated axons of optic nerve 
and that diffuse mitochondrial fission observed during OGD 
irreversibly hampers axon function recovery.

Inhibition of mitochondrial fission promotes myelinated axon 
function recovery following ischemia
To assess whether inhibition of mitochondrial fission promoted 
axon function recovery, the effects of OGD on CAP area 
recovery with or without Mdivi-1 was tested using different 
concentrations of Mdivi-1 (Figure 2A). The functional integrity 
of axons was quantified by the area under the evoked CAPs. 
After a 30-min baseline recording, Mdivi-1 was introduced at 
1, 10, 20, or 50 µM concentrations (pink) for 30 min and the 
superfusion conditions were maintained for 60 min of OGD and 
the initial 30 min of reperfusion time (Figure 2A and C).  After 
OGD, CAP area recovered to 21.6 ± 1.8% (n = 14, green) of the 
maximum-recorded CAP area, whereas a lower dose of Mdivi-1 
(1 µM) improved CAP area recovery to 25.9 ± 6.4% (n = 2, p 
< 0.4) and higher doses (10, 20, and 50 µM) improved CAP 
area recovery to 41.8 ± 4.1% (n = 2 p < 0.02), 37.4 ± 23.5% 

(n = 2, p < 0.4), and 46.4 ± 10.3% (n = 4, p < 0.003, one-way 
ANOVA, Bonferonni’s post hoc test), respectively (Figure 2A). 
Application of 50 µM Mdivi-1 provided the greatest amount 
of protection (Figure 2A-C, pink) when applied throughout the 
procedure (30 min before, 60 min during, and 30 min after the 
end of OGD; Figure 2C, pink time course and inset histograms). 
As expected, this functional recovery correlated with inhibition 
of mitochondrial fission and consequent preservation of 
mitochondrial integrity (Figure 1C, Mdivi-1 throughout).

Inhibition of mitochondrial fission fails to precondition 
myelinated axons against ischemia
Mitochondria have been implicated in neuroprotective 
signaling underlying preconditioning and represent a promising 
target in various neurodegenerative diseases (Correia et al., 
2010). It was proposed that low levels of mitochondrial ROS 

Figure 1: Drp-1 regulates ischemia-induced mitochondrial fission 
in WM. (A, B) OGD suppressed Drp-1 levels in MONs in the cytosolic 
fraction (0.7 ± 0.04%, n = 4) and revealed a corresponding increase in 
the mitochondrial fraction (2.0 ± 0.4%, n = 6; control 1.0 ± 0.0, n = 7, 
p< 0.05). Following application of the Drp-1 inhibitor Mdivi-1 (50 µM), 
cytosolic Drp-1 levels increased to 1.55 ± 0.3%, (n = 3, p < 0.05) and 
mitochondrial Drp-1 levels dropped to 0.94 ± 0.2% (n = 6, p < 0.05). (C) 
Confocal microscopy imaging showed that OGD drastically reduced 
CFP fluorescence in MONs from Thy-1 mito CFP (+) mice. Note that 
mitochondrial numbers declined and mitochondria became smaller 
and more round with OGD. Mdivi-1 application before, during, 
and after OGD preserved CFP pixel intensity and mitochondrial 
morphology; however, Mdivi-1 preconditioning application failed to 
preserve CFP fluorescence. (Scale bar, 5µm). n = number of MONs; 
*p < 0.05, **p < 0.01, one-way ANOVA. Error bars indicate SEM.

Figure 2: Inhibition of mitochondrial fission promotes WM 
function after ischemia. (A) Mdivi-1 exerts dose-dependent 
protection of axon function recovery in MONs following OGD. (B) 
Representative CAP traces at baseline in control ACSF (a), 60 min 
OGD (b), and recovery (c) conditions are shown for control (green), 
Mdivi-1 applied as an all-through treatment (pink), and Mdivi-1 
applied as a preconditioning treatment (purple). (C) CAP area 
recovered minimally after OGD (green, 21.6 ± 1.8%, n = 10). Mdivi-1 
all-through application (pink) preserved CAP area during OGD and 
improved CAP area recovery during reperfusion (41 ± 5.0%, n = 7). 
Mdivi-1 preconditioning treatment (purple) failed to promote axon 
function recovery (18.6 ± 6.0%, n = 4). Pink and purple horizontal 
lines represent Mdivi-1 all-through and preconditioning treatment 
applications, respectively. The inset histograms show quantification 
of CAP area recovery 2 h after OGD. MONs pretreated with Mdivi-1 
(pink) showed improved axon function recovery, whereas the CAP 
area recovery failed to improve when MONs were preconditioned 
with Mdivi-1 (purple). n = number of MONs; *p < 0.05, **p < 0.01, 
one-way ANOVA. Error bars indicate SEM.
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generation induces fission and fusion of mitochondria and alters 
mitochondrial motility and dynamics to form a mitochondria-
free gap, thereby preventing propagation of ROS during 
oxidative injury to precondition the tissue (Jou, 2008; Correia et 
al., 2010). We reasoned that by inhibiting mitochondrial fission, 
Mdivi-1 can regulate mitochondrial motility and subsequently 
precondition WM to promote axon function recovery as 
previously reported in GM (Ravati et al., 2000, 2001; Dirnagl 
and Meisel, 2008; Jou, 2008; Dirnagl et al., 2009). To determine 
whether inhibition of mitochondrial fission was effective in 
promoting axon function recovery when applied before the 
onset of OGD, Mdivi-1 was applied for 30 min after obtaining 
a stable baseline and then OGD was induced in normal ACSF 
(Figure 2B and C, purple traces and time course). OGD 
predictably suppressed the CAP area completely (Figure 2B, 
purple traces), and preconditioning with Mdivi-1 (50 µM) failed 
to promote axon function recovery (Figure 2B and C, purple 
time course and inset). Consistent with these results, Mdivi-1 
application before OGD failed to prevent mitochondrial fission 
or to preserve mitochondrial size and shape (Figure 1C, right 
panel).

Mitochondrial fission alters mitochondrial motility
Mitochondria underwent extensive fission during ischemia, 
but whether mitochondrial fragmentation correlates with loss 
of motility and whether preservation of mitochondrial motility 
correlates with axon function recovery were still unanswered 
questions. Time-lapse live imaging of mitochondria showed 
that mitochondria move bi-directionally, change direction, 
or become stationary in response to OGD (Figure 3). Optic 
nerves were placed and stabilized for 15 min in a perfusion 
chamber and continuously superfused with oxygenated ACSF 
(95% O2/5% CO2) at a rate of 3 ml/min at 37°C. Once an area 
was chosen where mitochondria in myelinated axons were 
clearly visible, mitochondria were imaged every 1.5 s. These 
mitochondria were observed to be very dynamic organelles 
that underwent fission and fusion constantly. Coordinated 
motility of mitochondria ensures that metabolically active 
areas are adequately supplied with ATP such that injured 
mitochondria are replaced with healthy ones during injury. 
Motile and stationary mitochondria were identified using 
kymographs (Figure 3A), which represent 2-dimensional 
images of stationary and motile mitochondria during the entire 
time-lapse sequence.  Vertical lines represent the stationary 
mitochondria (Figure 3A), while oblique lines represent motile 
mitochondria (Figure 3A). Specifically, blue lines denote 
mitochondria moving in the anterograde direction and tan 
lines indicate mitochondria moving in the retrograde direction. 
Note that a small but similar number of mitochondria moved 
in either direction (Figure 3A, tan and blue lines), while the 
majority remained stationary (Figure 3A, vertical lines). The 
size of mitochondria in young myelinated axons varies between 
1-8 µm and the average mitochondrial velocity varies between 
0.6 - 1.7 µm/s (Stahon et al., 2016). Mitochondria maintained 
a stable speed under control conditions. Onset of OGD caused 
a 50% drop in mitochondrial motility both in the anterograde 
(Figure 3B and 3C, blue histograms, OGD 0.57 ± 0.03, n = 157 
vs. Baseline 1.0 ± 0.02, n = 318, p < 0.001, One-way ANOVA, 
Bonferonni’s post hoc test) and retrograde directions (Figure 3B 
and 3C, tan histograms, OGD 0.48 ± 0.03, n = 95 vs. Baseline 
1.0 ± 0.03, n = 243, p < 0.001, one-way ANOVA, Bonferonni’s 
post hoc test). Recovery in the anterograde direction was not 
different (Figure 3B and 3C, blue histograms, Recovery 0.71 ± 
0.04, n = 139, p > 0.05, one-way ANOVA, Bonferonni’s post 
hoc test). Interestingly recovery in the retrograde direction was 
different (Figure 3B and 3C, tan histograms, Recovery 0.73 
± 0.03, n = 162, p < 0.001, one-way ANOVA, Bonferonni’s 
post hoc test). Mdivi-1 caused a prominent increase in 

mitochondrial motility in both directions within 10 min of 
application (Figure 3B, pink histograms, one-way ANOVA, p 
< 0.001), suggesting that inhibition of mitochondrial fission 
enhanced mitochondrial transport within myelinated axons. 
Note that the baseline effect of Mdivi-1 was more prominent 
in the anterograde direction (Figure 3B Anterograde, pink 
histograms with blue border, Mdivi-1 throughout Baseline 
1.60 ± 0.09, n = 68, p < 0.001) when compared to retrograde 
direction (Figure 3B Retrograde, pink histograms with tan 
border, Mdivi-1 throughout Baseline 1.39 ± 0.08, n = 63, p < 
0.001, one-way ANOVA, Bonferonni’s Post-test). This increase 
in mitochondrial motility persisted during OGD (60 min) (Figure 
3B Anterograde, pink histograms with blue border, Mdivi-1 
throughout OGD 0.89 ± 0.06, n = 53, vs. OGD 0.57 ± 0.03, n = 
157, p < 0.001; Retrograde, pink histograms with tan border, 
Mdivi-1 throughout OGD 0.87 ± 0.04, n = 69, vs. OGD 0.48 ± 
0.03, n = 95, p < 0.001, one-way ANOVA, Bonferonni’s post 
hoc test) and recovery (20 min) (Figure 3B Anterograde, pink 
histograms with blue border, Mdivi-1 throughout Recovery 
0.99 ± 0.03, n = 72, vs. Recovery 0.71 ± 0.04, n = 139, p < 
0.001; Retrograde, pink histograms with tan border, Mdivi-1 
throughout Recovery 0.95 ± 0.05, n = 55, vs. Recovery 0.73 ± 
0.03, n = 162, p < 0.05, one-way ANOVA, Bonferonni’s post 
hoc test) in both directions. Together with the electrophysiology 
results, these findings suggest that application of Mdivi-1 
promotes axon function recovery and preserves mitochondrial 
motility by preventing mitochondrial fission during ischemia.

To confirm that preservation of mitochondrial motility 
predicts the extent of axon function recovery, we applied 
Mdivi-1 just before OGD for 30 min. Live-imaging of 
mitochondria showed a similar increase in mitochondrial 
motility in both directions upon application of Mdivi-1 (Figure 
3C Anterograde, purple histograms with blue border, Mdivi-1 
throughout Baseline 1.60 ± 0.09, n = 68, vs. Baseline 1.0 ± 0.02, 
n = 318, p < 0.001; Figure 3B Retrograde, purple histograms 
with tan border, Mdivi-1 throughout Baseline 1.39 ± 0.08, n 
= 63, vs. Baseline 1.0 ± 0.03, n = 243, p < 0.001, one-way 
ANOVA, Bonferonni’s post hoc test). However, mitochondrial 
motility was suppressed  during OGD (Figure 3C Anterograde, 
purple histograms with blue border, Mdivi-1 throughout OGD 
0.74 ± 0.03, n = 62, vs. OGD 0.57 ± 0.03, n = 157, p > 0.05; 
Retrograde, purple histograms with tan border, Mdivi-1 
throughout OGD 0.66 ± 0.04, n = 53, vs. OGD 0.48 ± 0.03, n 
= 95, p > 0.05, one-way ANOVA, Bonferonni’s post hoc test) 
and did not improve during the recovery period (Figure 3C 
Anterograde, purple histograms with blue border, Mdivi-1 
throughout Recovery 0.76 ± 0.05, n = 42, vs. Recovery 0.71 ± 
0.04, n = 139, p > 0.05; Retrograde, purple histograms with 
tan border, Mdivi-1 throughout Recovery 0.72 ± 0.05, n = 38, 
vs. Recovery 0.73 ± 0.03, n = 162, p > 0.05, one-way ANOVA, 
Bonferonni’s post hoc test), which is consistent with failure of 
axon function recovery. Therefore, we propose that inhibition 
of mitochondrial fission directs mitochondrial motility, which 
consequently determines axon function recovery, and that 
preservation of mitochondrial motility is an indication of 
improved axon function recovery.

DISCUSSION
Our results showed that inhibition of mitochondrial fission, 
specifically inhibition of Drp-1 by Mdivi-1, during an ischemic 
episode modifies mitochondrial motility and determines the 
extent of axon function recovery in a completely myelinated 
WM tract, the optic nerve. This protective effect of Mdivi-1 
was dose-dependent and correlated with preservation 
of mitochondrial integrity.  While these results propose 
mitochondrial dynamics as a plausible target to reduce ischemic 
injury and to restore function in WM, Drp-1 inhibition failed to 
offer ischemic preconditioning tolerance to myelinated axons, 
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in contrast to its effect on neuronal cell bodies (Grohm et al., 
2012; Zhang et al., 2013b; Wang et al., 2014; Cui et al., 2016). 
We propose that regulating mitochondrial dynamics is necessary 
to promote functional recovery, but is not sufficient to provide 
ischemic tolerance to WM function.

One of the main findings of our study is that inhibition of 
Drp-1 during ischemia prevents mitochondrial fission, preserves 
CFP fluorescence, sustains axon conduction, and confers a dose-
dependent promotion of axon function recovery. In myelinated 
axons, an ischemic episode causes widespread mitochondrial 
fission mediated by translocation of cytoplasmic Drp-1 onto 
mitochondria. This in turn reduces the ability of mitochondria to 
produce the ATP that is essential for sustaining the excitability 
and function of axons (Baltan et al., 2011; Baltan, 2012, 2014b). 
Consequently, axon function is completely lost during injury 
(Tekkök et al., 2007; Baltan et al., 2008, 2013; Baltan, 2014a). 
During recovery, mitochondrial fission became permanent, 
as characterized by the loss of CFP (+) fluorescence in Thy-1 
mito-CFP (+) mice and subsequently a small portion of axons 
(~20%) regained function (Tekkök et al., 2007; Baltan et al., 
2008, 2013; Baltan, 2014a). The reported beneficial effects on 
neurons and improved functional recovery in our study make 
Mdivi-1 an ideal candidate for therapy to restore function when 
applied during ischemia. 

A novel finding in our study was that Mdivi-1 not only 
prevents mitochondrial fission, but also enhances mitochondrial 
motility without affecting normal axon function. Mdivi-1 
application preserved mitochondrial motility in both the 
anterograde and retrograde directions during OGD and during 
recovery, which was associated with improved axon function 
recovery. This suggests that mechanisms of fission and 
mitochondrial motility are interconnected. Previous studies 
have showed that Miro, which is a Ca2+-sensing member of 
the microtubular mitochondrial complex that determines the 
motility of mitochondria, depending upon the availability of 
ATP and Ca2+, is intricately linked to the mitochondrial fission 
protein Drp-1 (Saotome et al., 2008). Miro adaptor protein 
exhibits GTPase activity and forms complexes with kinesin for 
anterograde mitochondrial transport (Guo et al., 2005; Russo 
et al., 2009) and dynein for retrograde mitochondrial transport 
(Russo et al., 2009; Morlino et al., 2014; Melkov et al., 2016) 
along microtubules. Mdivi-1 preserves ATP levels during 
ischemia reperfusion injury (Li et al., 2016), thus effectively 
abolishing impairments to mitochondrial movement in both 
directions and blocking mitochondrial fission to improve axon 
function recovery. 

An unexpected aspect of our study was the lack of 
preconditioning-induced tolerance when Mdivi-1 was applied 

Figure 3: Mdivi-1 preserves mitochondrial motility against ischemia only when applied during OGD. (A) A representative kymograph 
created from CFP (+) live mitochondrial imaging shows immotile mitochondria as vertical lines. Note the diagonal lines representing 
mitochondrial movement in axons in the anterograde direction (blue) as well as the retrograde direction (tan). (B) Quantification of 
mitochondrial motility from kymographs demonstrated a 50% reduction in mitochondrial motility, both in the anterograde (blue histograms) 
and retrograde directions (tan histograms), which showed minimal recovery in the anterograde direction reperfusion. Mdivi-1 caused a 
prominent increase in mitochondrial motility in both directions within 10 min of application (pink histograms), suggesting that inhibition 
of mitochondrial fission enhanced mitochondrial transport within the myelinated axons. Note that the baseline effect of Mdivi-1 was more 
prominent in the anterograde direction (pink with blue border histograms). This increase in mitochondrial motility persisted during OGD (60 
min) and recovery (20 min) in both directions. n = number of MONs; *p < 0.05, *** p < 0.001, One-way ANOVA with Bonferonni’s post hoc test. 
(C) Mitochondrial motility analysis showed a similar increase in mitochondrial motility in both directions upon preconditioning application of 
Mdivi-1 (purple histograms). However, mitochondrial motility was suppressed during OGD and did not improve during the recovery period in 
either the anterograde or retrograde direction. *** p < 0.001, One-way ANOVA with Bonferonni’s post hoc test.



ORIGINAL RESEARCH ARTICLE

Conditioning Medicine 2018 | www.conditionmed.org

Conditioning Medicine | 2018, 1(2):64-72

70

only before injury. Many lines of evidence have posited that 
mitochondria constitute a convergence point of preconditioning 
in in vitro and in vivo models of cerebral ischemia (Perez-Pinzon 
et al., 2005; Dave et al., 2006). Mdivi-1 is a small molecule 
that is readily permeant through the blood-brain barrier and 
it provides ischemic tolerance to neurons by maintaining 
mitochondrial integrity and function. Previously, we reported 
that maintaining mitochondrial integrity during or after ischemia 
provides axon function protection and promotes recovery by 
conserving ATP production and reducing excitotoxicity (Baltan 
et al., 2011, 2013; Baltan, 2014b). Among well-established 
mediators of preconditioning (Barone et al., 1998; Kowaltowski 
et al., 2000; McLeod et al., 2005; Dave et al., 2006; Cadet et 
al., 2009; Dirnagl et al., 2009; Marsh et al., 2009; Hirata et al., 
2011; Gundimeda et al., 2012; Hibert et al., 2013; Hamner et al., 
2015), recent studies link mitochondrial biogenesis, specifically 
dynamics to preconditioning (Correia et al., 2010). Mdivi-1 
application led to a prominent increase in mitochondrial 
motility during baseline conditions. When Mdivi-1 was applied 
during OGD, mitochondrial motility was conserved during 
ischemia and improved further during recovery. This increase in 
mitochondrial motility, together with preserved mitochondrial 
integrity, implicated Mdivi-1 application as an ideal candidate 
to induce ischemic tolerance to WM against injury, comparable 
to the protection achieved in neurons. However, applying 
Mdivi-1 only before injury failed to precondition WM against 
ischemia. This is not due to a general lack of Mdivi-1 effects 
when applied only before ischemia, since our live imaging 
results confirm that Mdivi-1 application instantly modifies 
mitochondrial dynamics, as evidenced by their enhanced 
motility during the baseline period. This increase in motility is 
preserved during OGD, albeit to a smaller extent compared to 
Mdivi-1 application during ischemia. However, the enhanced 
motility of mitochondria vanishes during the recovery period. 
Based on the interplay between mitochondrial motility and 
mitochondrial fission, it is plausible that motile mitochondria 
are an indicator of better functional recovery. In particular, 
the extent of mitochondrial motility during recovery directs 
functional recovery. The downstream molecular mechanisms of 
this protection are currently under investigation. 

In conclusion, this is the first study to investigate whether 
inhibition of mitochondrial fission induces ischemic 
preconditioning tolerance to axons in an isolated pure WM 
tract. Conserving mitochondrial structure sustains mitochondrial 
motility during ischemia and confers functional protection. 
However, this approach fails to precondition axon function 
against ischemia, in contrast to its protective effects on neuronal 
survival. These findings support the concept that manipulations 
to precondition the brain should consider interventions to be 
beneficial for both the gray and white matter.
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