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The identification of neuroprotective therapies is gaining great interest in the design of strategies 
to prevent neuronal death. However, up until now all tested approaches have been unsuccessful 
despite many years of clinical trials, mainly because of the numerous side effects observed 
in humans and absent in animals used at the preclinical level. The neuroprotective strategy 
known as brain preconditioning is becoming important with the increased understanding 
of the endogenous mechanisms able to induce tolerance. Over the years, several stimuli 
have been described as possible preconditioning inducers, and many molecular pathways 
have been proposed as plausible mechanisms to explain the neuroprotection. The nature of 
these mechanisms is strongly influenced by the temporal profile examined and the nature 
of the stimulus able to induce conditioning protection. The purpose of the present review 
is to summarize the most studied molecular mechanisms involved in the different kinds of 
conditioning, highlighting differences and similarities.  Knowledge of these mechanisms may 
bring to light those molecular pathways that must be activated or inhibited in order to protect 
the brain. This review describes the possible differences and similarities among neuroprotective 
pathways involved in four different types of preconditioning stimuli: pharmacological, physical, 
surgical and thermoregulatory.

1Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via 
Pansini, 5, 80131, Naples, Italy. 2IRCCS SDN Napoli, Naples Italy.

#These authors contributed equally to this article.

Correspondence should be addressed to Dr. Giuseppe Pignataro (giuseppe.pignataro@unina.it).

Conditioning Medicine 2018 | Volume 1 | Issue 4 | April 2018



Conditioning Medicine 2018 | www.conditionmed.org

PHYSICAL EXERCISE

Collagen 
Type IV

Disruption of 
integrins

Integrity of the 
Neurovascular Unit

+
ICAM-1 
TNF-α receptors
Toll-like receptor 

Inflammatory 
Response

-

ATP

HIF-1α

Metabolic  
Homeostasis

+

Hsp70 

Anti-apoptotic 
genes (i.e. AIF)

Pro-apoptotic 
genes (i.e. Bcl-2)

Cell Death 

-

1. Introduction
The ischemic tolerance (IT) paradigm has been described 
in several organs.  It may be realized through different 
experimental strategies, and may represent a fundamental 
cell/organ response to certain types of injury (Barone et al., 
1998). Ischemic tolerance in the brain was first described in 
1990, when Kitagawa and collaborators demonstrated that 
two minutes of ischemic preconditioning in gerbils produced 
tolerance against global brain ischemia following a 24-hour 
interval, and that multiple brief preconditioning episodes were 
more protective than a single episode (Kitagawa et al., 1990). 
Over the years this strategy has been applied to several brain 
disorders, and several molecular mechanisms taking part in 
this protective process have been described. The mechanisms 
are usually classified in three distinct categories: triggers, 
mediators and effectors (Dirnagl et al., 2009). The nature 
of these mechanisms is strongly influenced by the temporal 
profile examined and the nature of the stimulus able to induce 
conditioning protection. The purpose of the present review is to 
summarize the most studied molecular mechanisms involved in 
the different kinds of conditioning, highlighting differences and 
similarities. Knowledge of these mechanisms may bring to light 
those molecular pathways that must be activated or inhibited in 
order to protect the brain.

Preconditioning triggers a radically different adaptive 
response and, in mammals, this response is characterized by 
at least two distinct time intervals of tolerance induced with 
respect to the preconditioned stimulus and subsequent ischemia. 
A short-lived protective phenotype can be induced within 
minutes of exposure to preconditioned stimuli, as a result of 
changes in ion channel permeability, protein phosphorylation 
and other post-translational modifications; this is known as 
rapid preconditioning. However, the phenomenon of ischemic 
tolerance is more effective if it occurs through gene activation 
and de novo protein synthesis; this "classic preconditioning" or 
delayed preconditioning takes many hours or even days to fully 
manifest (Gidday et al., 2006).

2. Physical Exercise
Among different conditioning stressors, physical exercise is 
capable of reinforcing the neurovascular unit, strengthening the 
blood-brain barrier, and improving angiogenesis, thus increasing 
the ability of the brain to enhance neuronal survival following 
vascular damage (Li et al., 2005; Cobianchi et al., 2017). It 
has been widely demonstrated that regular physical exercise 
improves abnormally elevated blood pressure, reduces obesity, 
improves blood glucose levels and ameliorates lipid metabolic 
disorders (Lee et al., 2003; Chrysohoou et al., 2005). Biological 
response and adaptations to stressors experienced with exercise 
provide protection against potential injury or cellular damage 
induced by a subsequent harmful stimulus. Generally, physical 
activity is an important modifiable risk factor, particularly for 
stroke and cardiovascular disease. Preconditioning exercise 
prior to ischemia can lead to protection from subsequent serious 
injury through the promotion of angiogenesis, mediation of 
inflammatory responses, inhibition of glutamate over-activation, 
protection of the blood-brain barrier, and inhibition of apoptosis 
(Zhang et al., 2011). The neuroprotective effects of exercise 
conditioning may be evoked by several mechanisms (Figure 
1), all of which strengthen neuronal integrity and improve cell 
survival (Kochanski et al., 2014).  Furthermore, animal studies 
have indicated that preconditioning exercise confers beneficial 
effects on cerebral ischemia, including enhanced survival rates, 
alleviation of oxidative damage, improvement of cerebral blood 
flow, and maintenance of neurovascular integrity (Ding et al., 
2004, 2006; Zhang et al., 2014). The exercise-mediated increase 
in neurogenesis and in synaptic plasticity occurs through both 

increased release of neurotrophins, a class of growth factors 
able to prevent neurons from undergoing programmed cell 
death, and release of other growth factors. These processes 
result in a reinforcement of the blood-brain barrier, in an 
enhanced induction of protective astrocytosis, and in an 
amplification of angiogenesis at the level of the neurovascular 
unit (Neeper et al., 1996; Sakakima et al., 2012).  A recent 
study showed that 1 or 2 weeks of pre-ischemic exercise did 
not reduce brain infarction after ischemic stroke compared with 
a non-exercise group, but that at least 3 weeks of pre-training 
was necessary for neuroprotection (Liebelt et al., 2010). Based 
on the above studies, it is evident that 2 or 3 weeks of pre-
training is necessary to exert neuroprotection after ischemic 
stroke. Most animal studies have used two types of exercise 
manipulations: voluntary and forced (Hu et al., 2010; Zhang et 
al., 2014). Voluntary exercise permits the subject to exercise at 
will, mimicking human daily activity or manual labor (Cotman 
and Berchtold, 2002). Conversely, forced exercise demands that 
the subject exercise on a treadmill for 0.5 to 1 h for 5–7 days 
per week (Ding et al., 2006). Forced exercise could be regarded 
as a simulation of gym exercise as in the case of athletes. 
While these two types of exercise manipulations are different 
in volume and amount of time, they both have been shown to 
exert protection. In particular, forced exercise, as opposed to 
voluntary exercise, has been shown to confer a more substantial 
neuroprotection in animal models of cerebral ischemia, reducing 
ischemic volume and neurological deficits (Hayes et al., 2008).

In addition, physical exercise extended over time (so-
called “chronic exercise”) reduces the effects of inflammation 
following an ischemic insult through the downregulation of 
leukocyte invasion and fluid permeability in interstitial space 
and collectively by reducing neuron apoptosis. The model of 
chronic exercise was performed on female Sprague-Dawley rats 
subjected to 10 weeks of daily training on a treadmill where 
running speed, grade and duration was progressively increased 
to 25 m/min, 10% grade, for 2 h/day by the end of week 4, and 
this intensity was maintained during the rest of the training 
period (Lawler et al., 2016). 

Exercise training benefit resides in the restoration of brain 
metabolism by preventing the metabolic dysfunction that occurs 
following an ischemic insult; this improvement is associated 
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Figure 1. Neuroprotective molecular mechanisms and mediators 
activated by physical exercise-induced brain conditioning. The 
mechanisms inducing protection after exercise preconditioning 
are indicated with regards to pathways involved in inflammation, 
and in integrity of neurovascular unity, metabolic homeostasis and 
apoptotic death.
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with an up-regulation of HIF-1α, whose neuroprotective 
effect has been demonstrated also during brain ischemic 
preconditioning (Valsecchi et al., 2011).  Together, these 
mechanisms provide increased neuroprotection against cerebral 
ischemic insults, improving neuronal survival following a 
cerebrovascular event. Understanding the mechanisms that 
are triggered by this form of preconditioning is useful for 
therapeutic intervention to enhance brain neuroprotection. The 
sections below will show the main mechanisms involved in the 
protection mediated by physical exercise (Figure 1).

2.1 Maintenance of the integrity of the neurovascular unit
One of the better characterized mechanisms of chronic 
exercise preconditioning is the augmented integrity of the 
blood-brain barrier (BBB), which leads to decreased cerebral 
edema and reduced brain injury (Masada et al., 2001). The 
integrity of the neurovascular unit, composed of endothelial 
cells, glia and neurons, is essential for both structural stability 
and maintenance of appropriate permeability of the cerebral 
vasculature (Del Zoppo and Hallenbeck, 2000; Del Zoppo and 
Mabuchi, 2003). 

Exercise preconditioning seems to improve BBB integrity 
by increasing the expression of the main basal laminar protein, 
collagen type IV, whose expression is usually strongly reduced 
in the ischemic core (Davis et al., 2007). Furthermore, cerebral 
microvasculature integrity depends on integrins that lose 
their affinity for lamina and collagen following ischemia. 
In response to exercise preconditioning, the disruption of 
integrin functionality is significantly attenuated (Ding et 
al., 2006), thus contributing to the stability of the BBB. The 
upregulation of integrins and collagen type IV represent one 
of the putative mechanisms of protection activated by exercise 
preconditioning. In a recent paper describing adult rats that 
exercised on a treadmill for 30 minutes each day for 3 weeks 
and were subjected to 2 hours of middle cerebral artery (MCA) 
occlusion, it was demonstrated that exercise pre-conditioning 
reduces brain injury by decreasing cerebral permeability and 
enhancing brain integrity after stroke (Ding et al., 2005).

2.2 Inflammatory response
Physical activity induces endogenous neuroprotection by 
reducing both the expression of inflammatory mediators 
and the accumulation of leukocytes during reperfusion. The 
beneficial effects of exercise on ischemic brain injury suggest 
multiple mechanisms underlying this induced neuroprotection 
(Zhang et al., 2016). Following acute ischemia, cytokines 
such as interleukin-1 (IL-1) and tumor necrosis factor-α 
(TNF-α) stimulate the expression of adhesion molecules 
such as P-selectin, E-selectin and intracellular adhesion 
molecule-1 (ICAM-1), thus triggering the increase in leukocyte 
infiltration into the brain parenchyma (Ding et al., 2005). 
In this phase, leukocytes may mediate reduced reperfusion 
following stroke and damage from free radicals, inflammatory 
cells, and endothelial dysfunctions. In 3-week-old rats 
exercised on a treadmill for 30 minutes each day for 3 weeks 
and then subjected to 2 hours of transient MCA occlusion, 
chronic preconditioning exercise prevented ICAM-1 over-
expression, and, consequently, also leukocyte infiltration in 
the brain. Exercise preconditioning also limited the damage 
that occurred during reperfusion (Ding et al., 2005). Exercise 
preconditioning may attenuate the inflammatory response 
occurring after stroke damage and modulate TNF-α levels. 
Indeed, chronic small elevations of TNF-α levels that have been 
observed with ischemic exercise and preconditioning can cause 
neuronal tolerance to cytokine development and may promote 
angiogenesis. Such elevated levels of TNF-α lead to a decrease 
in the expression of its receptor, generating neuronal tolerance. 
In fact, TNF-α receptors are downregulated during exercise 

preconditioning in a model in which chronic stimulations of low 
TNF-α levels resulted in receptor desensitization. The decrease 
of TNF-α receptors renders less dangerous the presence of 
elevated levels of TNF-α occurring in the post-stroke period, 
leading to a better overall neuronal survival (Ding et al., 2005).

Similar to what occurs in the case of TNF-α receptors, 
a reduced expression of another class of receptors, toll-
like receptors (TLR), has been observed after exercise 
preconditioning (McFarlin et al., 2006). Since TLRs take part 
in the immune response and probably in the cytokine cascade, 
leading to leukocyte infiltration, exercise preconditioning may 
reduce the post-stroke inflammatory cascade also through this 
mechanism (McFarlin et al., 2006). 

We now have enough evidence to claim that exercise 
preconditioning reduces post-stroke systemic inflammation 
by influencing the expression of specific receptors rather than 
modulating the expression of inflammatory mediators.

2.3 Cell death and survival pathways
Neuronal death following ischemic reperfusion injury is 
mediated by a series of genes and regulatory proteins that 
trigger cascades leading to cell death or survival. Heat shock 
protein (Hsp70) and ERK-mediated signaling pathways have 
been shown to be involved in ischemia-induced apoptosis 
(Xu et al., 2006; Zhang et al., 2001). In addition to the role of 
TNF-α and Hsp70, anti-apoptosis genes such as BCL-2 and 
BCL-xL, and pro-apoptosis genes such as Bax, BAD, Bak, and 
HIF are responsible for the neuronal response under hypoxic 
conditions (Lazou et al., 2006). By inducing an overexpression 
of Hsp70, exercise preconditioning leads to increased levels 
of anti-apoptotic protein expression, also leading to increased 
neuroprotection (Chaudhry et al., 2010). In fact, Hsp70 
mediates such neuroprotection by inducing a downregulation 
of proapoptotic proteins such as HIF and an upregulation 
of antiapoptotic molecules such as Bcl-2 (Matsumori et al., 
2005). Besides this well-characterized role, Hsp70 may work 
in conjunction with other factors, rather than alone, to prevent 
apoptosis (Lee et al., 2001). Indeed, Hsp70 together with TNF-α 
works to correctly balance the relationship between pro- and 
anti-apoptotic genes (Goel et al., 2010). Exercise is therefore 
likely to generate high levels of Hsp70 and, working in tight 
relationship with the elevated levels of TNF-α, may attenuate 
the apoptotic cascade. Previous studies suggested that transient 
forebrain and global ischemia causes neuronal injury and loss 
in the CA1 region of the hippocampus, a brain region important 
for learning and memory (Olsson et al., 2003; Ouyang et al., 
2007; Albasser et al., 2012). Exercise preconditioning rescued 
ischemia-induced hippocampal CA1 neuronal degeneration in 
a rat common carotid artery stroke model and thus prevented 
memory deficit (Shamsaei et al., 2015). Exercise prior to 
ischemic insult prevented hippocampal neuronal loss in CA1 
and CA3 regions through BAX/BCL-2 ratio reduction and 
caspase-3 activation (Aboutaleb et al., 2015, 2016).

2.4 Metabolic alterations
Chronic exercise preconditioning has also been associated with 
changes in neuronal tissue metabolism (Lawler et al., 2016). 
Physical exercise preconditioning is known to ameliorate 
stroke-induced injury. In addition to several other mechanisms, 
the beneficial effect of pre-ischemic exercise following stroke 
is due to an upregulated capacity to maintain energy supplies.  
This has been demonstrated through increases in the regional 
use of oxygen and glucose. These changes are associated 
with the ability to generate ATP by utilizing less oxygen, thus 
creating a greater ability to produce energy during hypoxia 
(McCloskey et al., 2001; Querido and Sheel, 2007; Lawler et 
al., 2016). Another mediator belonging to the class of metabolic 
proteins produced after physical exercise is hypoxia-inducible 
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factor-1α (HIF-1α). Physical exercise preconditioning signals 
a metabolic demand for higher ATP-generating capacity to 
cerebral tissues, indicated by a chronically elevated ADP/ATP 
ratio and upregulation of GLUT1, GLUT3, PFK, pAMPK, 
and HIF-1α after 3 weeks of exercise (Dornbos et al., 2013).  
In particular, HIF is strongly upregulated during different 
kinds of preconditioning, including exercise preconditioning, 
and induces both angiogenesis and glycolysis. Recently, a 
particularly relevant role played by HIF has emerged in several 
pathophysiological aspects of cerebral ischemia. In fact, neuron-
specific knocking-out of HIF-1α induces an exacerbation of 
brain damage after transient cerebral ischemia and prevents 
preconditioning-induced neuroprotection, supporting its 
neuroprotective action (Valsecchi et al., 2011).

3. Hypothermia and Hyperthermia
Hypothermic preconditioning is performed by administering 
hypothermia of a specific depth and duration at a time point 
prior to the onset of ischemia, showing its maximum effects 
especially when cooling is initiated within a few hours of 
injury onset (Rzechorzek et al., 2015; Kim et al., 2008, 
2015). Experimentally, whole-body cooling to temperatures 
of 31.5, 28.5, or 25,5 °C for 20 minutes showed a significant 
temperature-dependent reduction in brain infarction after focal 
cerebral ischemia in rats (Kochanski et al., 2013). Further 
studies demonstrated that hypothermic tolerance was not 
dependent on stimulus duration but rather on reaching a critical 
body temperature, as indicated by better neuroprotection 
obtained at 33°C compared to 34.5 °C (Yunoki et al., 2003).

On the other hand, hyperthermic stimulus is delivered 
through a controlled increase of the body temperature of the 
experimental model chosen, prior to the onset of ischemia. As 
mentioned, in a focal model of transient brain ischemia in rats, 
a 15-minute immersion of animals in a water bath set to 42°C 
determined a significant neuroprotective effect (Gidday et al., 
2006; Yenari et al., 2012).  

A number of explanations have been proposed for induced 
neuroprotection in response to preconditioning due to low 
(hypothermia) or high (hyperthermia) temperature, including 
several mechanisms that are usually related to the concept of 
“thermo-pharmacology“ (Muzzi  et al., 2017; Yunoki et al., 
2003; Nawashiro et al., 1997). These molecular mechanisms 
include reduction in cerebral metabolism (Polderman, 
2009), decreased free radical formation (Karibe et al., 1994), 
preservation of blood-brain barrier integrity (Huang et al., 1999; 
Chi et al., 2001) and suppression of inflammation (Aibiki et al., 
1999; Kimura et al., 2002; Luan et al., 2004) (Figure 2).

The best characterized of the preconditioning stimuli have 
been some heat shock proteins (HSP), hypoxia-inducible 
factor (HIF), and adenosine receptors. Mediators of these 
preconditioning stimuli will be discussed below.

3.1 Heat shock proteins
Heat shock proteins (HSPs) are molecular chaperones that 
play a vital role in the cellular response to stress stimuli as 
they diminish the accumulation of denatured proteins and 
increase cell survival through a reduction of pro-apoptotic 
proteins (Kampinga and Bergink, 2016). Boosting the activity 
or expression of crucial HSPs has been proposed as a promising 
way to delay the onset of or to treat neurodegenerative diseases. 
As the name suggests, heat shock protein expression may be 
induced by hyperthermic stimulus prior to brain stress, although 
several fundamental HSPs are expressed at physiological 
temperature (37°). Indeed, only a subset of HSPs are induced 
by hyperthermia (Kampinga and Bergink, 2016).

In particular, preconditioning induced by both hypothermia 
and hyperthermia determines the over-expression of 72-kDa 
inducible heat shock protein (Hsp72) and 70-kDa inducible heat 
shock protein (Hsp70) in glia and endothelial cells as well as 
in neuroendocrine areas 24 hours after stimulation (Kelty et al., 
2002; Kirino et al., 2002; Terao et al. 2009; Cullen et al., 1997; 
Yenari et al., 2005). The importance of the increase in Hsp72 
has also been underlined in other studies in which hyperthermic 
preconditioning applied in rats subjected to 42°C for 15 min 
has been demonstrated to protect synaptic function (Kelty et 
al., 2002; Kirino et al., 2002; Yenari et al., 2002). When mouse 
brain slices were treated with exogenous Hsp72 in the absence 
of hyperthermic stimulation, similar synaptic protection was 
demonstrated, confirming the central protective role of Hsp72 
(Kelty et al., 2002; Kirino et al., 2002). 

3.2 MicroRNAs
MicroRNA (miRNA), a subset of non-coding RNA that plays a 
role in silencing mRNAs, have been involved in a recent report 
describing a model of head injury which showed that cooling 
alters the expression of different miRNAs (Bao et al., 2013). 
Some miRNAs, including miR-874 and miR-451, were the most 
affected: the cooling decreased the expression of both miRNAs 
at 7 hours, but miR-451 was increased from cooling to 24 hours 
compared to normothermia. Further research is needed to define 
their role in brain injury (Vemuganti et al., 2010; Truettner et 
al., 2011).

3.3 HIF-1α
HIF-1α plays an important role in the maintenance of oxygen 
homeostasis and is also involved in the tolerance conferred 
by hyperthermic preconditioning (Du et al., 2010). Current 
literature links HIF-1 to the development of hypothermia. A 
reasonable explanation for this relationship might be the energy 
depletion attenuating glycolysis and ATP production associated 
with hypothermia, which in turn leads to HIF-1 inhibition 
under stressful conditions like stroke (Umschweif et al., 2013). 
This effect may be linked to heat shock protein functions. In 

Figure 2. Neuroprotective molecular mechanisms and mediators activated by hypothermia and hyperthermia-induced brain conditioning. 
The mechanisms inducing protection after thermal conditioning are indicated with regards to pathways involved in inflammation, integrity of 
neurovascular unity, synaptic function, free radical production and oxygen consumption.
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fact, it has been hypothesized that the overexpression of some 
HSPs induced by thermal preconditioning is controlled by 
the induction of HIF-1α, which confers resistance to harmful 
ischemia (Du et al., 2010; Huang et al., 2009). 

3.4 Adenosine receptors
Adenosine is an endogenous neuroprotectant that can inhibit 
the release of excitatory amino acids. When ischemia occurs, 
adenosine can increase significantly. Adenosine inhibits 
synaptic transmission, decreases K+-stimulated glutamate 
release, and inhibits presynaptic calcium fluxes via adenosine 
A1 receptors (Liu et al., 2009). Notably, the protective response 
to brain conditioning induced by hyperthermia (Xu et al., 
2002) is attenuated in animals receiving an adenosine receptor 
antagonist, thus suggesting the involvement of adenosine 
receptors in the protection elicited by thermal preconditioning 
(Yuan et al., 2004). This and other evidence suggest a 
crucial role for adenosine receptors in both hypothermic 
and hyperthermic tolerance (Yuan et al., 2004; Carlin et al., 
2017). Indeed, administration of adenosine or adenosine 
5'-monophosphate (AMP) can trigger a hypothermic, torpor-like 
state that mediates strong neuroprotection (Carlin et al., 2017). 
This mechanism of reduced metabolic activity could explain the 
effect of adenosine in mediating some of the protective actions 
elicited by thermal preconditioning.

4. Hypoxia and Ischemia
Preconditioning induced by hypoxia (HPC) or a subliminal 
ischemia can produce significant protective effects on neurons 
in experimental cells, animals and humans (Matsushima and 
Hakim,1995). Occlusion of the middle cerebral artery (MCAO) 
by intraluminal insertion of a nylon monofilament into the 
internal carotid artery is the most common model to induce 
focal cerebral ischemia in rats and mice (Takano et al., 1997; 
Durukan et al., 2008). This surgical procedure, if performed 
for a brief time, is an excellent method for inducing ischemic 
preconditioning (Pignataro et al., 2009, 2012). In the same 
way, intermittent hypoxia preconditioning can ameliorate nerve 
injury in the global cerebral ischemia-reperfusion model (Zhao 
et al., 2017).

The mechanisms by which subliminal episodes of hypoxia 
and ischemia may confer neuroprotection have been partially 
elucidated, and they include: (1) the activation of hypoxia-
inducible factor-1 alpha (HIF-1α) and of its target genes; (2) 
the activation of pro-survival pathways; (3) a general genomic 
reprogramming; (4) the activation of anti-inflammatory 
pathways; (5) modification of the metabolic processes; and (6) 
ionic homeostasis maintenance. In the present review, the main 
mechanisms involved in hypoxia/ischemia neuroprotection will 
be analyzed (Figure 4).

4.1 Hypoxia-inducible factor-1 alpha 
The involvement of hypoxia-inducible factor-1 alpha (HIF-
1α) and the increased expression of its target genes in the 
neuroprotection induced by hypoxic preconditioning (HP) 
have been widely experimentally confirmed (Wacker et al., 
2012). The transcriptional factor HIF-1α is a prominent player 
in hypoxia-inducible gene expression, which is stabilized by 
hypoxic stimuli and subsequently binds to HREs on many pro-
survival genes across many cell types and species (Majmundar 
et al., 2010; Ratan et al., 2004; Semenza et al., 2009; Sharp 
and Bernaudin, 2004; Wenger, 2002). In particular, a dose-
dependent increase in DNA binding and transcriptional activity 
of HIF-1α occurs during hypoxia and following reoxygenation 
(Tzeng et al., 2010). This mechanism is responsible for 
activating the transcription of over 200 genes including 
antiapoptotic factors, ion-gated channels, structural membrane 
proteins, and glycolysis-promoting enzymes (Majmundar et al., 

2010; Semenza, 2009; Wenger, 2002). Interestingly, following 
ischemic insult, HIF-1α expression was widely evident in 
microvessels of preconditioned animals (Bergeron et al., 2000). 

Among HIF target genes that are involved in stroke 
pathogenesis, the sodium–calcium exchanger-1 (NCX1), a 
ubiquitous plasma membrane protein regulating cellular calcium 
and sodium homeostasis in the brain, has aroused great interest. 
One of the mechanisms by which HIF-1 exerts its pro-survival 
role during ischemic preconditioning is the upregulation of 
NCX1 transcript and protein, whose neuroprotective action 
has been fully substantiated by recent studies (Valsecchi et 
al., 2011). Among other transcription factors involved in 
HPC, Nrf1, ATF2, JNK, MAPKs (ERK 1/2), c-fos, STAT3, 
mTOR, CREB and NFκB directly or indirectly target hypoxia-
responsive gene expression, showing more extensive effects for 
HPC-mediated changes in gene expression compared to HIF-1α 
(Kenneth and Rocha, 2008; Majmundar et al., 2010; Ran et al., 
2005; Rybnikova et al., 2009; Seta et al., 2002; Trachootham 
et al., 2008). Together these transcriptional factors might act 
by lowering the concentration of the excitatory amino acids 
aspartate and glutamate during HPC, which was proposed to 
contribute to the enhanced anoxia tolerance in this model (Xie 
et al., 1999). Moreover, it has been demonstrated that reduced 
activity of AMPA receptors was protective in a rat model of 
hypobaric hypoxia stimulus because it reduced the sensitivity of 
neurons to glutamate and/or downregulated glutamate receptors 
(Turovskaya et al., 2011; Zhang et al., 2006; Chang et al., 
2006). In addition, adaptation to hypoxia of cells and tissues 
leads to the transcriptional induction of a series of genes that 
have important functions in iron metabolism. Transferrin (Tf) 
and transferrin receptor (TfR1) are two key proteins involved 
in iron uptake by mammalian cells. Hypoxia can increase iron 
uptake by cells as well as the expression of Tf and TfR1, both 
of which have been identified as hypoxia-inducible genes. It has 
also been reported that several other iron transport or regulation 
proteins, including ceruloplasmin (Cp), iron regulatory protein 
1 (IRP1) and 2 (IRP2), and hepcidin, are regulated by HIF-1 
in response to hypoxic conditions (Yang et al., 2010).  Among 
other putative targets of HIF are the NO synthases iNOS and 
eNOS. Both NOS isoforms have been included among the 
possible targets of HIF in mediating neuroprotection induced by 
hypoxic preconditioning in neonate and adult brain (Gidday et 
al., 1999; Zhu et al., 2006; Vellimana et al., 2011). 

4.2 Pro-survival pathways
Numerous reports support the idea that the activation of the 
pro-survival kinase Akt, through its phosphorylation, promoted 
by hypoxic brain conditioning, represents the trigger of other 
pro-survival targets, including the antiapoptotic protein BAD 
(Rybnikova et al., 2006; Wang et al., 2010), NFκB (Rybnikova 
et al., 2008), eNOS (Hashiguchi et al., 2004) and the anti-
apoptotic survivin, a member of the “inhibitor of apoptosis” 
(IAP) gene family (Zhang et al., 2007), able to induce a rapid 
tolerance to an ischemic event.  Neuronal NO synthase (nNOS) 
also seems to play a relevant role in neuroprotection induced 
by ischemic preconditioning in mature neurons (Gonzalez-
Zulueta et al., 2000), involving N-methyl-d-aspartate (NMDA) 
receptor activation, Ca2+ influx, and new protein synthesis. In 
particular, an increase of NO levels is related to the modulation 
of the MPTP opening (Shiva et al., 2007) and the enhancement 
of activity and protein expression of mitochondrial Mn-SOD 
(Scorziello et al., 2007), thus affecting reactive oxygen species 
(ROS) production. These functions are mediated by two main 
pathways: the RAF/MEK/ERK cascade (Nandagopal et al., 
2001) and the PI3K/Akt pathway (Brunet et al., 2001). On the 
role of survival kinases in ischemic preconditioning, different 
opinions are present in the scientific literature. Ischemia 
activates a process of protein phosphorylation (Shamloo and 
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Wieloch, 1999) that persists for a few days, involving calcium/
calmodulin-dependent protein kinase II (CaMKII) and mitogen-
activated protein kinases (MAPK). Some authors report that 
this enhanced and excessive phosphorylation is blocked after 
preconditioning induction. On the other hand, the activation 
of Akt/protein kinase B occurring after a sublethal ischemia 
may contribute to the induction of tolerance (Yano et al., 
2001, Pignataro G. et al., 2012). Some studies suggest that the 
early phase of ischemic preconditioning is characterized by 
rapid post-translational modification of pre-existing proteins 
through signaling pathways that involve protein kinase C (PKC) 
(Speechly-Dick et al., 1994) and MAPK (Shamloo et al., 1999). 
The common idea is now that the over-phosphorylation of some 
kinases belonging to the so-called RISK (Reperfusion Injury 
Salvage Kinase) family takes part in the effects of ischemic 
preconditioning in promoting cell survival. Accumulating 
evidence suggest that other pharmacologic approaches for 
inducing tolerance may work by mechanisms quite similar to 
those induced by hypoxia (He et al., 2008).

4.3 Genomic reprogramming 
Although based on the nature of hypoxic conditioning stimulus 
(i.e. its frequency, magnitude and duration), genes that regulate 
neuronal signal transduction, ionic homeostasis, metabolism, 
inflammation, apoptosis, and transcriptional activation are 
often upregulated by hypoxia (Bernaudin et al., 2002; Bickler 
and Fahlman, 2009; Tang et al., 2006; Gustavsson et al., 
2005). Epigenetic transcriptional regulation by HPC can occur 
through interaction with hypoxia-response elements (HREs) on 
promoter sequences of genes targeted by different stressors. In a 
model of oligonucleotide preconditioning, cytosine-phosphate-
guanine (CpG) administration reduced ischemic injury 
dramatically in both rodent and nonhuman primate models of 
experimental stroke, and this action was mediated by small 
RNA non-coding molecules, namely microRNAs (Bahjat et al, 
2011; Stevens et al., 2008; Vartanian B et al., 2015). Several 
oxygen-dependent enzymes can serve as “receptors” for post-
translational modifications and changes in gene expression 
induced by hypoxia. A crucial role of this mechanism of 
tolerance induction is mediated by mitochondria, wherein free 
radicals that originated from oxygen-nitrogen species formed 
upon hypoxia serve as subsequent signals for neuroprotection 
(Bailey et al., 2011). Another mediator is adenosine, which is 
formed during metabolic stress or oxygen demand, and is able 
to induce a genomic adaptative response that involves the whole 

neurovascular unit (Lin et al., 2008; Zhang and Lu, 1999). 
Delayed preconditioning is mediated by the synthesis of new 
protective proteins, regulated by the activation of transcriptional 
factors through PKC and tyrosine kinase signaling pathways. 
The regulation of gene expression leading to the apoptosis 
process seems to be related to ischemic tolerance. Indeed, during 
ischemic preconditioning, Bcl-2 protein expression is enhanced, 
thus preventing the delayed neuronal death that normally occurs 
in the penumbra region (Shimazaki et al., 1994), whereas p53 
gene expression is markedly reduced (Tomasevic et al., 1999). 
Generally, protein synthesis is impaired by cerebral ischemia 
(Kleihues and Hossmann, 1971), but in the gerbil model it was 
established that preconditioning restores general protein levels 
(Nakagomi et al., 1993; Furuta et al., 1993): autoradiography 
analysis using isotope-labeled amino acids demonstrated that 
the pattern of amino acid incorporation in the CA1 neurons 
returned to a normal pattern within 24 hours. Several studies 
have shown that hypoxic preconditioning is able to increase 
manganese and copper-zinc superoxide dismutase (SOD1 and 
SOD2), heme oxygenase-1 (HO-1), glutathione peroxidase, 
and glutathione reductase, in proportion to the magnitude of 
the ischemic tolerance evoked (Alkan et al., 2008; Arthur et 
al., 2004; Duan et al., 1999; Garnier et al., 2001; Gorgias et al., 
1996; Stroev et al., 2004; Zhu et al., 2007).

4.4 Inflammatory response 
Following ischemia, cytokines such as IL1 and TNF-α stimulate 
the expression of adhesion molecules including intercellular 
adhesion molecule 1 (ICAM-1), and selectin P and E on 
endothelial cells, activating the inflammatory pathway within 
ischemic regions. As mentioned above, TNF-α represents the 
major pro-inflammatory cytokine with profound effects on the 
brain response to hypoxic damage. Chronic elevations of low 
TNF-α levels following exercise or ischemic preconditioning 
can cause neuronal tolerance to cytokine development and 
promote angiogenesis (Pradillo et al., 2005). Such elevated 
levels of TNF-α lead to a decrease in the expression of 
its receptor, generating neuronal tolerance. Similar to 
what occurs with TNF-α, recent studies have shown that 
ischemic preconditioning reduces other markers of systemic 
inflammation such as toll-like receptors that are involved in the 
immune response and probably in the cytokine cascade, leading 
to leukocyte infiltration (Stevens et al., 2008). In a model of 
transient global ischemia in which both common carotids were 
simultaneously occluded for either 2 or 3.5 min to produce 
transient global ischemia of the forebrain, daily injection of IL-
1α over a 3-day period protected CA1 hippocampal neurons 
from 3.5 min of global ischemia in a dose-dependent manner as 
compared with IL-1α vehicle injections (Ohtsuki et al., 1996).

4.5 Metabolic contribution 
Tissue and cellular metabolism usually runs lower in hypoxic 
environments, a manifestation of the well-known “Pasteur 
effect” which, in turn, leads to the reduction in protein synthesis 
and other adaptative responses (Buck and Pamenter, 2006). 
This mode of saving energy is mainly determined by glucose 
transporters (Ye et al., 2008), glycolytic enzymes (Jones and 
Bergeron, 2001), calcium influx (Bickler et al., 2009; Semenov 
et al., 2008), mitochondrial respiration (Buck and Pamenter, 
2006), and the endoplasmic reticulum (Bickler et al., 2009). 
HPC then reprograms the metabolic response of cell/tissue 
to ischemia, as has been proposed for conditioning’s effect 
on the genome. A mechanism through which HPC induces 
tolerance is represented by preservation of postischemic Na+/
K+-ATPase levels (Zhan et al., 2011). In neonatal rats it has 
been shown that HPC-induced neuroprotection was not due to 
tissue acidosis or depletion of high-energy phosphate reserves 
following ischemia, but was related to the restoration of high-
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Figure 3. Neuroprotective molecular mechanisms and mediators 
activated by medical gas-induced brain conditioning. The 
mechanisms inducing protection after medical gas preconditioning 
are indicated with regards to pathways involved in inflammation, cell 
death, and ionic homeostasis.
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energy phosphate reserves in the early hours of postischemic 
reperfusion (Vannucci et al., 1998). Accumulating evidence 
suggests that mitochondria are likely to be critical effectors 
of the ischemia-tolerant state (Correia et al., 2010; Dirnalg 
and Meisel, 2008; Zhan et al., 2002) given that with strong 
preservation of mitochondrial function, ATP production by 
aerobic respiration, the activation of ATP-sensitive potassium 
channel (KATP) and reduction of superoxide production 
secondary to fewer electrons from the electron transport chain 
are all involved in preconditioning signaling (Busija et al., 
2008; Correia et al., 2010).

4.6 Restoration of ionic homeostasis
Recent evidence highlights that maintenance of ionic 
homeostasis plays a key role in propagating the preconditioning 
phenomenon (Cuomo et al., 2015). Several experiments 
performed both in vivo and in vitro showed that an improved 
capacity to preserve cellular ionic and pH homeostasis 
represents a determinant factor for ischemic tolerance 
(Pasuphathy and Miller, 2005). Indeed, in cortical neurons 
exposed to brief non-injurious oxygen and glucose deprivation 
(OGD), impairment in voltage-gated potassium channels (KV 
channels) has been observed. Moreover, in vivo experiments 
showed that ischemic preconditioning prevented the inhibition 
of Na+⁄K+-ATPase activity after brain ischemia in hippocampal 
and cortical neurons of rats subjected to ischemia (de Souza 
Wyse et al., 2000).  In fact, neuronal stimulation induces 
changes in intracellular calcium concentration that in turn 
trigger several mechanisms mediating numerous nerve cell 
functions. In order to avoid the extended elevation of Ca2+ 
cell levels, which become toxic, and in order to allow cells to 
be able to respond to a new stimulus, several pathways work 
together to restore calcium levels. Among them there are 
Ca2+ binding proteins that avoid abnormal intracellular Ca2+ 
increase through sequestration into the endoplasmic reticulum 
and mitochondria, and through the extrusion across the plasma 
membrane (Zaidi, 2010). The latter process is operated mostly 
by the low affinity-high capacity Na+/Ca2+ exchanger (NCX) 
and by the high affinity-low capacity plasma membrane Ca2+-
ATPase (PMCA). In certain conditions, Ca2+ flux across 
membranes is the predominant mechanism of Ca2+ removal 
from cytosol compared to refilling of stores, for example 
after activation of localized signals in the dendritic spines of 
neurons. In particular, in these cases, while PMCA transport 
proteins control the resting levels of this ion, NCX proteins 
play a role in calcium homeostasis following the increase of 
levels during a signal event. Regarding calcium homeostasis 
maintenance, preconditioning seems to induce an increase 
in NCX and PMCA activity (Ohta et al., 1996) and protein 
expression (Kato et al., 2005; Pignataro et al., 2008), and result 
in a reduction of  intracellular [Ca2+] (Shimazaki et al., 1998).  
In fact, during cerebral ischemia experimentally induced in 
rats, NCX gene expression is reduced in the brain in a different 
manner depending on the exchanger isoforms and on the region 
involved in the insult (Pignataro et al., 2004; Boscia et al., 
2006). In contrast, NCX1 and NCX3 isoforms increased after 
ischemic insult in preconditioned rats (Pignataro et al., 2012), 
and their silencing partially prevented preconditioning-mediated 
neuroprotection. 

Moreover, it has been shown that p-Akt, by acting on 
NCX1 and NCX3 (Formisano et al., 2008), represents a 
fundamental transducer of the neuroprotection exerted by 
preconditioning (Pignataro et al., 2012). Recently it was 
demonstrated that NCX1 is a target gene for HIF-1α, and that 
after ischemic preconditioning induction HIF-1α expression 
is strongly augmented and exerts its prosurvival role through 
the upregulation of NCX1 transcript and protein (Valsecchi 
et al., 2011). In regular ischemic conditions, Ca2+ ions play 

an important deregulation role in mitochondria, enhancing 
the uncoupling of oxidative phosphorylation and causing the 
reduction of mitochondrial membrane potential with consequent 
mitochondrial permeability transitional pore (MPTP) opening 
(Dirnagl et al., 1999). The latter process represents a crucial 
event for cell death, but its inhibition is considered as an 
important step for cytoprotection observed after preconditioning 
stimulus. In this scenario, nitric oxide (NO) and protein kinases 
have been proposed as possible MPTP regulators (Shiva et al., 
2007; Zhao et al., 2006). In 2015, an epigenetic regulation of 
sodium/calcium exchanger isoform 1 (NCX1), respectively, 
by two functional protein complexes was reported: REST/
Sp3/HDAC1/HDAC2 and HIF-1/Sp1/p300. In particular, 
whereas the former downregulates NCX1 expression during 
brain ischemia, the latter upregulates it during preconditioning. 
Notably, the development of drugs that epigenetically regulate 
NCX1 by preventing its downregulation in stroke might be a 
new pharmacological avenue to ameliorate neuronal damage 
during brain ischemia (Formisano et al., 2015).

4.7 Inflammatory cytokines
Other defensive mechanisms activated during ischemic 
preconditioning are represented by the inflammatory cytokines. 
Among cytokines, tumor necrosis factor-alpha (TNF-α) 
or interleukin-1 beta (IL-1β) have been implicated in the 
mechanisms of ischemic tolerance (Ohtsuki et al., 1996; Wang 
et al., 2000). Furthermore, NF-kB, which is activated by 
various signals such as oxidative stress and intracellular Ca2+ 
elevation, is involved in the induction of neuroprotective gene 
products such as MnSOD and Bcl-2, and pretreatment with its 
inhibitor abolishes the neuroprotective effect of preconditioning 
(Blondeau et al., 2001). 

4.8 Heat shock proteins
The stress response of the brain to a noxious environment 
through heat shock proteins is recognized to be an important 
process underlying ischemic tolerance induction. These 
proteins exhibit protective effects in the neurons by reducing 
protein misfoldings, preventing ER stress response, scavenging 
reactive oxygen species (ROS), and blocking caspase-mediated 
apoptosis. In fact, HSP gene expression is greatly enhanced, 
and the role of HSPs is known to be essential for cell survival 
because the stress response avoids the accumulation of 
denatured proteins that arise from various stresses. In post-
ischemic hippocampal neurons, the processing of denatured 
proteins is disturbed (Ide et al., 1999), leading to their 
accumulation. However, when ischemic preconditioning 
is induced by preceding ischemia, Hsp70 increases in the 
hippocampal CA1 pyramidal cells of ischemic animals (Kirino 
et al., 1991), and so its experimental manipulation induces 
ischemic tolerance by reducing accumulation of misfolded 
proteins (Nakata et al., 1993).

4.9 Miscellany of other effectors
It has been observed that hypoxic preconditioning reduces 
post-ischemic leukocyte adherence and diapedesis secondary 
to downregulation of adhesion molecule RNA expression 
in cortical venules, thus reducing inflammation (Stowe et 
al., 2011). Another mechanism of hypoxic preconditioning-
induced tolerance seems to be mediated by the upregulation 
of Bcl-2 and Bcl-x levels in hippocampus and cortex of rats, 
accompanied by a reduction in the extent of Bax upregulation 
caused by subsequent severe hypoxic injury (Rybnikova et al., 
2006). Like all conditioning stimuli, hypoxic preconditioning 
promotes adaptive changes in all components of the so-called 
neurovascular unit, neurons, endothelium and glial cells, 
starting with the increase in vessel diameters of leptomeningeal 
anastomoses (Woitzik et al., 2006). The reduction of infarct 
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volume by hypoxic preconditioning is also achieved by a 
postischemic cerebrovascular angiogenic response able to 
increase cerebral vascular density (Gustavsson et al., 2005). 
Surprisingly, hypoxic conditioning is also able to improve basal 
lamina integrity as well as pericyte structure/function. Recently, 
the role of VEGF following a hypoxic preconditioning 
stimulus has been clarified. In adult mice, antagonism of 
one of two receptors for VEGF, VEGF-R2, blocked hypoxic 
preconditioning-induced tolerance to transient focal stroke 
in adult mice, thus indicating that this receptor mediates the 
majority of pro-angiogenic effects (Fan et al., 2011). Finally, 
in a study carried out on a global ischemia model, it was 
demonstrated that IPC protected hippocampal CA1 neurons 
from delayed death when the test insult was induced 1 to 3 days 
after IPC, and this effect was mediated by an increase in the 
expression of neuronal Ku70, a DNA repair protein (Sugawara 
et al., 2001).

5. Pharmacological Brain Conditioning
A large range of agents can induce pharmacological 
conditioning: gas anesthetics, thrombin, erythropoietin, 
deferoxamine, erythromycin, opioids, and lipopolysaccharide. 
They all act as upregulating defense mechanisms in the brain, 
with EPO and thrombin acting as endogenous compounds 
able to modify stroke and LPS and inducing upregulation of 
endogenous defense mechanisms. Accumulating evidence 
suggest that other pharmacologic approaches for inducing 
tolerance may work by mechanisms quite similar to those 
induced by hypoxia (He et al., 2008).

5.1 Medical gases 
Among different stimuli that may induce preconditioning are 
medical gases commonly used as general anesthetics in clinical 
practice (Gidday et al., 2006) ( 3). 

Multiple mechanisms have been proposed to contribute to 
isoflurane conditioning, including: signaling molecules, as 
free radicals (Sang et al., 2006); intracellular Ca2+ (Bickler et 
al., 2005); calcium/calmodulin-dependent protein kinase II 

(CAMKII) (McMurtrey and Zuo, 2010); and inducible NOS 
(Kapinya et al., 2002; Zhao and Zuo, 2004). The isoflurane 
preconditioning effect may also involve protein kinase C 
(PKC) and nitric oxide synthase (NOS) (Zheng and Zuo, 
2005); however, ATP-sensitive potassium (KATP) channels 
may not play a role in this phenomenon (Zhang and Zuo, 
2003), although conflicting results reveal its involvement in a 
delayed phase of preconditioning (Xiong et al., 2003; Kaneko 
et al., 2005). The role of adenosine in isoflurane conditioning 
has been recently demonstrated as A1 receptors have been 
shown to be implicated in an acute phase of protection in 
rats after focal brain ischemia (Liu et al., 2006). Inhibition of 
isoflurane-induced neuroprotection in rat cerebral slices by 
glutamate transporter inhibitors suggests a role of glutamate 
transporters in this effect (Zheng and Zhuo, 2003; Wang et al., 
2008). Similarly, glutamate transporters seem to be involved 
in the halothane-mediated preconditioning, at least in the 
acute phase of protection. Furthermore, sevoflurane-induced 
neuroprotection was inhibited by mitochondrial KATP channels, 
thus suggesting a role for these channels in this medical gas 
effect (Velly et al., 2009). It has recently been suggested in a 
study using rat hippocampal slices that ERK is also involved 
in sevoflurane conditioning (Wang et al., 2007). Molecules 
that are suggested to be involved in this protection include: 
free radicals (Yang et al., 2011), cAMP response element-
binding (CREB) (Luo et al., 2008), and antioxidant enzymes 
(Yang et al., 2011). Interestingly, one published study suggests 
that inhibition of nuclear factor (NF)-kB, p38 MAP kinase, 
and subsequent neuroinflammation contributes to sevoflurane-
induced neuroprotection (Wang et al., 2011). Moreover, since 
the protection is prevented by the use of an ERK inhibitor, this 
suggests a role for ERK in this protection (Ding et al., 2009). 

With desflurane, the protection conferred was lost due to a 
glutamate transporter inhibitor (Wang et al., 2007), indicating 
that glutamate transporters may represent a common target in 
the preconditioning neuroprotection elicited by gas anesthetics. 

Another mechanism of protection common to all gas 
anesthetics, including xenon and nitrous oxide, is the activation 
of mitochondrial KATP channels (Bantel et al. 2009; Weber et 
al. 2005).

Further, different molecular mechanisms have been suggested 
for hyperbaric oxygen (HBO)-mediated preconditioning. The 
role of kinases such as ERK and p38 MAPK (Qin et al., 2007; 
Yamashita et al., 2009) has been highlighted. Furthermore, 
HBO increases the expression of ribosomal protein S6 kinase, 
an enzyme that is involved in cerebral protein synthesis (Qin et 
al., 2008). Other identified mediators of HBO preconditioning 
are cyclooxygenase-2 (COX-2) (Jadhav et al., 2009, 2010) 
and nitric oxide (NO) (Fan et al., 2010). NO would induce 
autophagy activation and consequently increased expression 
of HIF-1α, (Gu et al., 2008), erythropoietin (Gu et al., 2008) 
and antioxidant enzymes (Li et al., 2008). In addition to 
the mechanisms discussed above, HBO has been shown to 
preserve regional cerebral blood flow and partial oxygen 
pressure in rat brain tissue with traumatic injury (Hu et al., 
2010).  It has been also supposed that free radicals can trigger 
HBO preconditioning effects, increasing expression of heme 
oxygenase 1 in primary spinal cord neuronal cultures (Li et al., 
2007).

5.2 Thrombin
Thrombin is a protease that cleaves fibrinogen to fibrine in the 
coagulation cascade (Coughlin, 2000). Many of thrombin’s 
actions are mediated by protease-activated receptors 
(PARs), a kind of G-protein coupled receptor, activated by 
a proteolytic cleavage, expressed in neurons and astrocytes 
(Wang et al., 2002; Coughlin, 2002). Through these PARs, 
thrombin can affect cell shape, secretion, mobility, and 
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metabolism (Coughlin, 2000). Other pathways that contribute 
to thrombin-induced brain injury are: the potentiation of 
NMDA receptors through activation of PAR1; the induction 
of endothelial hyperpermeability through Rho kinase and 
protein tyrosine kinase (van Nieuw Amerongen et al., 2000); 
the increase in substances as complement C9, TNF-α, matrix 
metalloproteinases; and upregulation of heat shock protein 27 
(Hsp27). Among neuroprotective proteins activated by thrombin 
pathway is HIF-1α.

5.3 Erythropoietin
Erythropoietin is an endogenous cytokine able to mediate 
neuroprotection through its anti-apoptotic actions elicited 
by recruiting components of the Janus tyrosine kinase 2 
pathway (JNK-2), increasing glutathione peroxidase, inhibiting 
recruitment of inflammatory cells and decreasing the production 
of various proinflammatory cytokines. Together these effects 
improve hemodynamics, stimulating angiogenesis and 
preventing compromise of the blood-brain barrier (Hasselbratt 
et al., 2006). Neuroprotective effects mediated by erythropoietin 
are seen within minutes and can last up to 3 days (Ruscher et 
al., 2002).

5.4 Deferoxamine
Deferoxamine is a potent iron chelator that has shown 
neuroprotective effects through a variety of mechanisms. 
Deferoxamine administered subcutaneously penetrated 
the blood-brain barrier and inhibited iron-mediated free 
radical formation, neurological deficits and levels of APE/
Ref-1, a marker of oxidative DNA damage, in a rat model 
of intracerebral hemorrhage (Namura et al., 2003). Its 
administration has also been shown to significantly increase 
binding of HIF-α to DNA (Prass et al., 2003) thus reinforcing 
HIF-induced preconditioning neuroprotection.

5.5 Erythromycin
Erythromycin is an antibiotic of the macrolide family showing 
a beneficial effect when used as a preconditioning stimulus. 
The mechanism of action of this antibiotic as neuroprotectant 
is not completely clear; nevertheless, it is known to occur also 
through the reduction of cytokines, chemokines and iNOS, 
potent mediators of inflammatory neuronal damage (Koerner et 
al., 2007).

5.6 Opioids
Most commonly used for analgesia, opioids function by 
inhibiting nociceptive signal transmission (Lehmann, 1997). 
The mechanism of opioid preconditioning likely involves 
several pathways and has not yet been fully elucidated. It 
has been shown that preconditioning with morphine reduces 
lipopolysaccharide- and interferon-mediated injury to microglial 
cells in the brain (Gwaks et al., 2010) and improves blood flow 
to ischemic regions (Chi et al., 2010).

5.7 Lipopolysaccharide (LPS)
LPS is an integral component of the cell walls of gram-
negative bacteria. One of the possible explanations for the 
neuroprotective role of this potent endotoxin is the induction of 
tumor necrosis factor-alpha and the stimulation of manganese 
superoxide dismutase.  Both mechanisms may contribute to the 
reduction of free radical-mediated damage, finally inhibiting 
the apoptosis cascade (Mallard and Hagberg, 2007). LPS is also 
able to improve blood flow in the peri-infarct area minutes and 
days after occlusion (Furuya et al., 2005).

5.8 Anti-miRNA
MicroRNAs (miRNAs) are small (20-22 nucleotides) non-
coding RNA able to regulate post-transcriptional gene 
expression by direct effects on messenger RNA (mRNA) 

translation. MicroRNAs have been shown to be regulated after 
non-harmful and harmful stimuli in the brain and to contribute 
to neuroprotective mechanisms. Several studies reveal that 
ischemic preconditioning regulates expression of miRNAs and 
their predicted targets in animals subjected to preconditioning, 
and further suggest that miRNAs could serve as effectors of 
ischemic preconditioning-induced tolerance (Saugstad, 2011). 
MicroRNAs are master regulators of gene-expression, and their 
regulation after a preconditioning stimulus could be causative 
of the general suppression of gene expression and make them a 
good candidate for future targeted therapies. Indeed, microRNA 
inhibitors, or anti-miRNA, represent a new class of compounds 
able to post-transcriptionally regulate targeted genes at the 
level of their RNA messengers. Among them, it has been 
recently shown that anti-miRNA-103 is capable of inducing 
a brain conditioning phenomenon in a rat model of transient 
brain ischemia (Vinciguerra et al., 2014). The mechanism of 
action of this locked nucleic acid (LNA) anti-miRNA blocked 
the detrimental increase of pathological miRNA-103-1 in 
the ischemic core responsible for the downregulation of 
neuroprotective plasma membrane sodium/calcium exchanger 
(NCX1) involved in the counteraction of sodium and calcium 
ion imbalance following stroke (Figure 4). 

5.9 Beta-methylamino-L-alanine
Recently it has been shown that the cycad neurotoxin L-BMAA 
can be used as a preconditioning stimulus in SOD1 G93A 
mice and an in vivo model of amyotrophic lateral sclerosis 
(ALS). In fact, its administration can delay ALS progression by 
preventing the downregulation of sodium/calcium exchanger 
isoform 3 (NCX3), a membrane transporter able to handle 
the deregulation of ionic homeostasis occurring during ALS 
(Anzilotti et al., 2018).

5.10 TRAIL
TNF-related apoptosis-inducing ligand (TRAIL) is a member 
of the TNF superfamily released by microglia following focal 
brain ischemia. A recent study provided evidence that the 
neuroprotection elicited by ischemic preconditioning, consisting 
of 30 minutes of MCAO followed by 100 minutes of occlusion 
of the same brain artery (Pignataro et al., 2012), occurs either 
through upregulation of the TRAIL decoy receptor DcR2 or 
through downregulation of TRAIL and its death receptor DR5, 
indicating that PC prevents detrimental effects of TRAIL and 
sets into motion the cell survival machinery to rescue neurons 
from death (Cantarella et al., 2014).
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5.11 Epigenetic modulators
The transcriptional repressor REST is a zinc finger protein that 
binds to a conserved 21-bp motif known as RE1 (repressor 
element 1, also called NRSE). In a recent paper it was shown 
for the first time that sodium/calcium exchanger isoform 1 
(NCX1) is a new additional target gene for REST. In fact, it has 
been shown that this transcription factor selectively represses 
neuro beneficial NCX1 expression in the brain via the NCX1-
RE1 sequence, causing a loss of neuroprotective effect obtained 
in a rat model of preconditioning performed by subjecting 
animals to 30 minutes of MCAO followed by 100 minutes of 
deleterious re-occlusion of the MCA (Formisano et al., 2013).

In this new promising field, recently it has been reported 
that resveratrol, a natural polyphenolic antioxidant with a 
well-documented epigenetic modifier activity, found in grape 
skin, grape products, and peanuts as well as in red wine, is 
able to influence stroke progression (Lanzilotta et al., 2013, 
2015; Faggi et al., 2018) and, when used as a preconditioning 
stimulus, confers a long-lasting, 14-day neuroprotection 
(Khoury et al., 2016). Resveratrol’s long-lasting neuroprotective 
effect could be explained by the multitude of stroke-related 
pathways targeted by this drug. In particular, it has effects on 
NF-KB (Lanzilotta et al., 2013, 2015; Faggi et al., 2018) and 
on sirtuin 1, a NAD+-dependent histone deacetylase whose 
induction by resveratrol is able to reduce infarct volume as well 
as neurological deficits (Koronowski et al., 2017; Khoury et al., 
2018).

6. Conclusions
The knowledge of molecular and cellular mechanisms 
underlying the induction and the maintenance of ischemic 
tolerance is still fragmentary; however, various studies have 
demonstrated that different events play key roles in the 
protection against ischemic stroke (Pignataro et al., 2009; 
Kirino, 2002). 

Several mechanisms are involved in the protection mediated 
by brain conditioning, and some of them are strictly dependent 
upon the stimulus used to induce brain protection, while others 
are similar and among the most common preconditioning-
stimuli (Figure 5).

Three proteins are important mediators of all types of 
preconditioning examined: TNF-α, HSP and HIF-α. Other 
proteins such as NO and ERK are considered mediators only 
of some types of preconditioning. Others, like ICAM-1 and 
survival factors, seem to be specific only for one typology 
of preconditioning. However, these observations need to 
be examined carefully as they could easily lead to incorrect 
conclusions. Indeed, it is possible that for some of these 
factors there are no studies to demonstrate their involvement in 
preconditioning. On the other hand, it is evident that the factors 
that appear to be consistently involved in protection represent 
excellent molecular targets to be further explored for possible 
future therapeutic applications.

The knowledge of such mechanisms may provide more direct 
opportunities for translational neuroprotection trials. Indeed, 
the present review, summarizing the specific pathways activated 
in different types of conditioning, would provide information 
about which mediators need to be activated or inhibited to 
protect the brain from ischemic injury.
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