
Conditioning Medicine
www.conditionmed.org

REVIEW ARTICLE | OPEN ACCESS

Remote ischemic conditioning in ST-segment elevation 
myocardial infarction: an update
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Acute myocardial infarction (AMI) and the heart failure (HF) that often results are among the leading 
causes of death and disability in the world. As such, novel strategies are required to protect the 
heart against the detrimental effects of acute ischemia/reperfusion injury (IRI), in order to reduce 
myocardial infarct (MI) size and prevent the onset of HF. The endogenous cardioprotective strategy 
of remote ischemic conditioning (RIC), in which cycles of brief ischemia and reperfusion are applied 
to a tissue or organ away from the heart, has been reported in experimental studies to reduce MI 
size in animal models of acute IRI. In the clinical setting, RIC can be induced by simply inflating and 
deflating a cuff placed on the upper arm or thigh to induce brief cycles of ischemia and reperfusion, a 
strategy which has been shown to reduce MI size in ST-segment elevation myocardial infarction (STEMI) 
patients undergoing primary percutaneous coronary intervention (PPCI). The results of the ongoing 
CONDI2/ERIC-PPCI trial are eagerly awaited, and will provide definitive answers with regards to the 
cardioprotective effect and clinical outcome benefits of RIC in STEMI. 
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Introduction and background

Ischemic heart disease is the leading cause of morbidity and 
mortality in the world. This reflects the increased prevalence 
of cardiovascular risk factors including cigarette smoking, 
diabetes, hypertension and hypercholesterolemia. These 
conditions also predispose patients to peripheral vascular 
disease, cerebrovascular disease and renal disease, adding to 
disease complexity of the cardiovascular patient. 

Up to 25% of ST-segment elevation myocardial infarcts 
(STEMI) are fatal (Lambert, et al., 2016). Survivors of 
the acute coronary thrombotic occlusion depend on timely 
revascularization with thrombolysis or primary percutaneous 
coronary intervention (PPCI) to abate infarction-induced 
lethal arrhythmias and cardiac arrest in the short term. In the 
long term, reduced ischemic time leads to smaller infarct size. 
However, despite timely PPCI or thrombolytic therapy, there 
remains significant morbidity and mortality following STEMI.
The ischemic insult to the myocardium is twofold: (1) at the 

time of coronary occlusion, and (2) at the time of reperfusion 
secondary to reperfusion injury. Reperfusion injury can be 
responsible for up to 50% of final infarct size (Hausenloy, 
2013). Pump failure secondary to non-viable infarcted 
myocardium is one of the long-term sequelae of STEMI. The 
ensuing heart failure syndrome involves deleterious activation 
of the renin-angiotensin-aldosterone system and peripheral 
vasoconstriction, leading to sodium and water retention (with 
worsening heart failure) and left ventricular remodeling 
(hypertrophy, dilation and impaired cardiac function) in a 
patient already burdened with multiple morbidities as outlined.

To reduce the risk of short- and long-term complications 
of infarction, sophisticated and efficient systems are in place 
in many countries for prompt recognition and treatment of 
STEMI through thrombolysis or PPCI. Strategies employed 
have included ambulance initiation of thrombolysis and 
the development of designated centers providing direct 
PPCI services to respective catchment areas, bypassing the 
emergency department, with reduction in “pain-to-balloon” and 
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“pain-to-thrombolysis” time. However, despite these measures, 
morbidity and mortality following PPCI or thrombolytic 
therapy remain significant.

Attenuating myocardial reperfusion injury, the cardiomyocyte 
death which occurs on reperfusing ischemic myocardium, is a 
potential therapeutic target for reducing infarct complications 
such as cardiac death and re-hospitalization for heart failure 
(HHF). Accessible and effective clinical interventions are 
required to address reperfusion injury and reduce associated 
complications. In this regard, remote ischemic conditioning 
(RIC) has been shown to reduce perioperative myocardial injury 
in patients undergoing coronary artery bypass graft (CABG) 
surgery in small studies, but the beneficial effects of RIC 
have not been reproduced in large clinical outcome studies. In 
contrast, RIC remains a promising cardioprotective strategy in 
STEMI patients undergoing PPCI. In this article, we review the 
therapeutic potential for RIC as a cardioprotective strategy for 
reducing MI size and improving clinical outcomes post-PPCI. 

Remote ischemic conditioning – cardioprotection from a 
distance
Przyklenk et al. (1993) were the first to describe the 
ca rd iop ro t ec t ive  phenomenon  o f  r emote  i s chemic 
preconditioning, where 4×5-minute cycles of occlusion and 
reflow to the circumflex coronary artery reduced MI size 
in a canine heart induced by 45-minute occlusion and 3 hrs 
reperfusion of the left anterior descending artery (Przyklenk 
et al.,1993). This study suggested that cardioprotection could 
be transferred from one coronary artery territory to another 
through ischemic preconditioning (Przyklenk et al., 1993). 
This concept was then extended to the remote organ, the 
kidney, by McClanahan et al., who showed that 10-minute 
occlusion and reflow in the renal artery could reduce MI size 
induced by 30-minute ligation and 3 hrs reperfusion of the left 
main coronary artery (McClanahan et al., 1993). Oxman et al. 
demonstrated that RIC could be applied non-invasively, using a 
tourniquet applied to the hindlimb (Oxman et al., 1997), a key 
finding in the translation of RIC into the clinical setting.

Two key properties of RIC have facilitated its translation into 
the clinical setting (see Figure 1 for a timeline of translation of 
RIC from experimental to clinical studies): 

(1) Feasibility: In an experimental animal MI model, the
RIC stimulus could be applied to the hindlimb to protect the 
heart against acute IRI (Oxman et al.,1997; Birnbaum & Hale, 
1997). The RIC stimulus can be delivered non-invasively in 
human volunteers by inflating a blood pressure cuff on the 
upper arm to induce cycles of brief ischemia-reperfusion 
(Kharbanda & Mortensen, 2002). Hence, most clinical studies 
have applied RIC using cycles of brief ischemia-reperfusion in 
the upper or lower limb (limb RIC). 

(2) Flexibility: In ischemic preconditioning (IPC), the
protective stimulus has to be applied prior to ischemia and in 
ischemic postconditioning (IPost), at the onset of reperfusion to 
the heart directly. RIC can be applied at any time (before, after 
the onset of, or at the end of ischemia) to a remote organ or 
tissue.

Mechanisms underlying RIC cardioprotection
The  ac tua l  mechan i s t i c  pa thways  unde r ly ing  RIC 
cardioprotection are not known, but it has been established that 
a neurohormonal pathway links the distal organ or tissue to the 
heart. The pathway is believed to involve the release of local 
autacoids stimulating the sensory afferent neural pathway in the 
remote organ or tissue, resulting in the production of circulating 
transferrable blood-borne factor(s) conferring cardioprotection. 
Current evidence suggests the factor is thermolabile and 
hydrophobic, and is between 3.5 and 30 kDa. There is likely a 
complex interaction of signaling pathways in response to RIC, 

linking to the regulation of various cellular functions, including 
the acute phase response, immune response, hemostasis and 
lipid transport (Sivaraman & Hausenloy, 2015).

A number of candidate molecules have been suggested to be 
the blood-borne cardioprotective mediator of RIC, including 
opioid (Dickson et al., 2001), adenosine (Leung & Wang, 2014), 
bradykinin (Schoemaker, 2000), erythropoietin, calcitonin 
gene-related peptide, stromal derived factor 1-alpha (SDF1-α) 
(Davidson & Selvaraj, 2013), hypoxia inducible factor 1-alpha 
(HIF1-α) and nanoparticles called exosomes produced by cells 
(Giricz & Varga, 2014). Adenosine, bradykinin and calcitonin 
gene-related peptide (CGRP) may activate afferent neural 
pathways within the remote preconditioned organ to confer 
cardioprotection (Hausenloy & Yellon, 2008). Activation of 
protein kinase C appears to be an important step in humoral 
cardioprotection in rats (Serejo et al., 2007). 

Naloxone appears to block the cardioprotective effect of 
RIC in rats (Patel et al., 2002). Endogenous opioids generated 
by remote preconditioning may be a humoral factor conferring 
cardioprotection (Patel et al., 2002). It has been proposed 
that endocannabinoids generated by intestinal ischemia may 
activate CB2 endocannabinoid receptors on the myocardium in 
cardioprotection (Hajrasouliha et al., 2008). Remote ischemic 
preconditioning (RIPC) appears to suppress the inflammatory 
response and activate an anti-inflammatory, anti-apoptotic gene 
transcription profile (Konstantinov et al., 2004; Konstantinov 
et al., 2005; Peralta et al., 2001). Further investigation of 
the relevance to cardioprotection is required. KATP channels 
of the myocardial sarcolemma and mitochondria have been 
implicated in IPC cardioprotection (Yellon, 2003). Ligand 
receptor binding at the cell surface activates signal transduction 
pathways which open mitochondrial KATP channels. The 
generation of mitochondrial reactive oxygen species then 
mediates cardioprotection by either activating pro-survival 
kinases (Yellon, 2003) or inhibiting mitochondrial permeability 
transition pore (mPTP) opening (Costa et al., 2006). ĸ-opioid 
agonist induces mPTP opening (Zhang et al., 2006). Remote 
rat limb preconditioning can mediate cardioprotection 
through ĸ-opioid receptor blockade (Zhang et al., 2006). 
8-sulphophenyl theophylline (8-SPT), a non-specific adenosine
receptor antagonist, could block the cardioprotective effect of
RIC performed on the rabbit kidney if administered prior to
preconditioning (Pell et al., 1998) and also after preconditioning
(Takaoka et al., 1999). Elevated adenosine levels in carotid
artery blood of rabbits subjected to preconditioning suggests
that myocardial adenosine receptor binding is a key step in
the mechanism of preconditioning (Takaoka et al., 1999).
Free radical scavenger was able to block the cardioprotective
effect of RIC (Weinbrenner et al., 2004), implicating signaling
reactive oxygen species as a mediator of RIC cardioprotection.
Transection of the femoral nerve before application of the
RIC stimulus blocked cardioprotection (Lim & Yellon, 2010;
Steensrud & Li, 2010). Ding and Zhang noted that brief renal
artery occlusion was associated with increased afferent renal
nerve activity, and nerve transection also blocked RIC-induced
cardioprotection (Ding & Zhang, 2001). Direct stimulation
of the sensory nerve of the remote organ or tissue has been
reported to reproduce the cardioprotective effect of RIC (Dong
et al., 2004; Merlocco & Redington, 2014; Redington &
Disenhouse, 2013). Stimulation of cutaneous sensory nerves,
using either topical application of capsaicin (Redington &
Disenhouse, 2012) or surgical skin incision (Ren & Wang,
2004; Gross et al., 2011), has been reported to mimic RIC
cardioprotection.

Clinical application of remote ischemic conditioning
Cardiac bypass surgery as a clinical setting for cardioprotection
The first clinical setting for RIC to be tested in was cardiac 
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bypass surgery, in which the heart is subjected to a global 
ischemic insult when put onto cardiopulmonary bypass, 
followed by global reperfusion injury (acute IRI) when taken 
off cardiopulmonary bypass (Venugopal  & Ludman, 2009). 
Direct handling of the heart, coronary embolization, and the 
inflammatory response to cardiopulmonary bypass can all 
contribute to perioperative myocardial injury (PMI), which can 
be quantified by measuring serum cardiac enzymes (creatine 
kinase MB isoenzyme, troponin T and I) (Croal & Hillis, 2006; 
Wang & Stewart, 2013), and can be detected as late gadolinium 
enhancement (LGE) on cardiovascular magnetic resonance 
imaging (CMR) (Selvanayagam & Porto, 2005). The presence 
of PMI has been associated with worse clinical outcomes post-
cardiac surgery (Croal & Hillis, 2006; Wang & Stewart, 2013). 

The first attempt to clinically apply RIC involved only eight 
patients, in a study in which remote limb preconditioning 
failed to affect CK-MB in elective patients undergoing cardiac 
surgery (Gunaydin et al., 2000). This study was underpowered; 
CK-MB was measured 5 minutes after declamping the aorta; 

cuff inflation to 300 mmHg was used; and an inadequate RIPC 
protocol was used with two cycles of 3-minute upper limb 
ischemia followed by 2-minute reperfusion (Gunaydi et al., 
2000). 

Cheung et al. were the first to successfully apply RIPC 
clinically (Cheung et al., 2006). They reported that an RIPC 
protocol using four 5-minute cycles of lower limb ischemia was 
able to reduce myocardial injury, improve airway resistance, 
and decrease inotrope score in 17 children undergoing 
congenital cardiac surgery (Cheung et al., 2006).

Hausenloy et al. (2007) demonstrated that RIPC, using 
three 5-min cycles of upper limb ischemia, was able to reduce 
myocardial injury (43% reduction in serum troponin T released 
over 72 hours) in adult patients undergoing elective coronary 
artery bypass grafting surgery. RIPC using limb ischemia has 
also been reported to be cardioprotective in the setting of repair 
of abdominal aortic aneurysm (AAA) elective surgery (Ali 
et al., 2007). Ali et al. demonstrated that invasive lower limb 
ischemia using two 10-minute episodes of iliac artery occlusion 

Figure 1. This figure shows the timeline of translation of RIC from experimental to clinical studies.
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was able to reduce myocardial injury (27% reduction in serum 
troponin I released over the perioperative period) and preserve 
renal function during elective AAA surgical repair (Ali  et al., 
2007).

The results of several recent meta-analyses have confirmed 
the cardioprotective effects of RIC cardiac bypass surgery in 
attenuating perioperative myocardial injury (Haji Mohd Yasin 
& Herbison, 2014; Healy & Khan, 2014).  There have, however, 
been several neutral studies (Karuppasamy & Chaubey, 2011; 
Young & Dalley, 2012; Rahman & Mascaro, 2010) including at 
least one very large study (McCrindle & Clarizia, 2014).

RIPHeart study (Meybohm et al., 2015): 1403 adults 
undergoing elective cardiac surgery with cardiopulmonary 
bypass under general anesthesia with intravenous propofol 
were randomized to upper-limb RIPC or sham intervention. No 
significant differences between the RIPC group and the sham-
RIPC group were seen in the level of troponin, the duration of 
mechanical ventilation, the length of stay in the intensive care 
unit, the length of hospital stay, incidence of new onset atrial 
fibrillation, or the incidence of postoperative delirium.

ERICCA study (Hausenloy et al., 2015a): 1612 patients 
undergoing elective on-pump CABG with or without valve 
surgery were randomly assigned to RIPC or sham conditioning. 
There was no standardization of anesthetic management and 
perioperative care. The combined primary endpoint was death 
from cardiovascular causes, nonfatal myocardial infarction, 
need for coronary revascularization, or stroke at 12 months 
from randomization. RIPC was not shown to improve clinical 
outcomes in patients undergoing elective on-pump CABG with 
or without valve surgery.

The reasons for this discrepancy may relate to: patient/
clinical factors (CABG vs. valve surgery, stable vs. unstable 
patients); timing of the limb RIC protocol (before vs. after 
surgical incision); blinding to the RIC protocol (proper vs. 
limited blinding); the intensity of the RIC protocol (3 vs. 4 
cycles of limb RIC and inflation of cuff to 200 mmHg vs. 15 
mmHg above systolic blood pressure); and the presence of 
confounding factors.

Propofol and volatile anaesthetic agents – potential 
confounding factors
Attenuation of RIC has been noted when propofol anaesthesia 
has been used (Bautin et al., 2014), and the use of propofol, 
rather than volatile anaesthesia, appears to be a common 
factor in studies that failed to protect with RIC in CABG 
(Heusch, 2013; Zangrillo et al., 2015). The American College 
of Cardiology Foundation and the American Heart Association 
Task Force on Practice Guidelines have recommended the 
use of volatile anaesthetics in surgical patients with increased 
cardiovascular risk (Fleisher et al., 2008). Whether RIC 
provides additional cardioprotection to the use of volatile 
anaesthetic in patients undergoing cardiac surgery is uncertain, 
with clinical studies showing mixed results. 

Diabetes may attenuate RIC cardioprotection through 
neurohumoral pathways
Single-dose RIC does not appear to offer much cardioprotection 
in diabetic patients (Xu et al., 2014; Baranyai et al., 2015; 
Epps & Smart, 2016; Lejay et al., 2016) and its  mechanisms 
are not well understood. About 60% to 70% of people with 
diabetes mellitus will eventually develop the complication of 
diabetic peripheral neuropathy (Boulton et al., 2005). In many 
of these patients, sensory C fibers mediate the cardioprotective 
effect of RIC and are damaged (Green et al., 2010), and this 
may be an important contributor to the attenuation of RIC 
cardioprotection (Saxena et al., 2010; Jensen et al., 2012). It 
may be necessary to exclude patients with diabetic neuropathy 
or sensory neuropathy from future clinical trials in RIC. In 
addition, diabetes affects the intracellular signaling pathways 

that are crucial for endogenous cardioprotection. These include: 
PI3K/Akt/glycogen synthase kinase 3-beta (PI3K/Akt/GSK3-β) 
signaling pathway, phosphorylation of ERK1/2 (extracellular 
signal-regulated protein kinases 1 and 2), generation and 
release of nitric oxide, ATP-sensitive potassium channels, and 
oxidative stress generation (Chen et al., 2012; Baumgardt et al., 
2016; Wang & Zhao, 2016). This may further contribute to the 
attenuation of RIC cardioprotection.

PPCI as a clinical setting for RIC cardioprotection
Timely myocardial reperfusion by PPCI is the most effective 
therapy for limiting MI size and preserving LV systolic function 
in patients presenting with STEMI. Restoration of coronary 
blood flow in the occluded artery results in myocardial 
reperfusion injury, which may be  amenable to cardioprotection 
by IPost and RIC (Bulluck & Hausenloy, 2015). 

In several proof-of-concept studies, limb RIC appeared to be 
effective when administered by paramedics in the ambulance 
(Botker & Kharbanda, 2010a), on hospital arrival prior to PPCI 
(Rentoukas & Giannopoulos, 2010a; White & Frohlich, 2014), 
and even at the onset of reperfusion with PPCI (Crimi & Pica, 
2013). Please see  1 for a summary of major clinical studies in 
STEMI patients.

Bøtker and Kharbanda (2010b) in the CONDI trial were the 
first group to test the effect of RIC in patients with STEMI. The 
study involved 142 STEMI patients with the primary endpoint 
of myocardial salvage index at 30 days post-PPCI, measured 
by myocardial perfusion imaging as the proportion of the 
area at risk salvaged by treatment. They found an increase in 
myocardial salvage index at 30 days with no difference in MI 
size measured by SPECT or in peak troponin. Reduced MI size 
was found, however, in LAD STEMI. 

Crimi et al. (2013) then assessed the effect of RIC on 100 
anterior STEMI patients and found a 20% reduction in 72-hour 
AUC CK–MB and a 21% reduction in myocardial edema by 
MRI. This was the first study to show the effect of RIC given at 
onset of reperfusion, and the first to report the effect of RIC on 
enzymatic MI size and myocardial edema.

It has been observed that the beneficial effect of RIPC can 
be inhibited by the opioid receptor blocker naloxone (Patel 
et al., 2002). Rentoukas and Giannopoulos (2010b) sought to 
assess the enhancement of the cardioprotective effect of RIC 
by opioids by having 3 arms in their study: an RIC-only group, 
an RIC and morphine group, and a control group. In paired 
comparisons between groups, the RIC and morphine group 
performed better than the control group in terms of both ST-
segment reduction and peak troponin I, whereas the differences 
in outcomes between the RIC-only group and the control group 
did not reach statistical significance.  

Munk et al. (2010) analyzed the effect of RIC in relation 
to the size of the myocardial area at risk (AAR), infarct 
location, and target vessel patency in a study involving 242 
STEMI patients. Ejection fraction, LV volumes (2D and 3D 
echocardiography and myocardial perfusion imaging), and 
speckle-tracking global longitudinal strain were compared 
between treatment groups. Although no significant overall effect 
was observed, RIC seemed to result in modest improvement 
in LV function in high-risk patients prone to develop large 
myocardial infarcts.

Sloth et al. (2014) performed a study involving 251 STEMI 
patients. The RIC intervention was 4×5-min inflations/
deflations of cuff on upper arm in the ambulance before PPCI 
without sham control. This showed a 51% reduction in all-cause 
mortality, nonfatal MI, TIA or stroke, and HHF at 3.8 years, 
and was the first study to test the effect of RIC on long-term 
outcomes after PPCI as a secondary endpoint.

Prunier et al. (2014) had a study arm involving PPCI 
combined with RIC and IPost which consisted of four cycles of 



Conditioning Medicine 2018 | www.conditionmed.org 237

Conditioning Medicine | 2018, 1(5):233-242 REVIEW ARTICLE

1-min inflation and 1-min deflation of the angioplasty balloon in
their study consisting of 55 STEMI patients. RIC immediately
prior to PPCI was shown to reduce infarct size in STEMI
patients, yet combining this therapy with an IPost strategy did
not lead to a further decrease in infarct size.

In the study by White et al. (2015), 197 patients with 
ST-segment elevation myocardial infarction with TIMI 
(thrombolysis in myocardial infarction) flow grade 0 were 
randomly assigned to receive RIC (four 5-min cycles of upper-
arm cuff inflation/deflation) or control (uninflated cuff placed on 
upper arm for 40 min) protocols prior to PPCI. This study aimed 
to determine whether RIC could reduce myocardial infarct (MI) 
size, assessed by cardiac MRI, in patients presenting with ST-

segment elevation myocardial infarction. The primary study 
endpoint was MI size assessed by cardiac MRI in 83 subjects on 
days 3 to 6 after admission. RIC was found to reduce MI size by 
27%, when compared with the MI size of control subjects. At 
24 hours, high-sensitivity troponin T was lower with RIC. RIC 
also reduced the extent of myocardial edema measured by T2-
mapping CMR, and lowered mean T2 values. This precluded 
the use of CMR edema imaging to accurately estimate the area 
at risk. When using coronary angiography jeopardy scores to 
estimate the area at risk, RIC was found to significantly improve 
the myocardial salvage index. This study demonstrated that RIC 
performed in patients with STEMI treated by PPCI reduced MI 
size, increased myocardial salvage, and reduced myocardial 

Table 1 - Major clinical studies of RIC in STEMI 
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edema when performed prior to PPCI. 
Yellon et al. (2015) performed the ERIC LYSIS study, 

which is the only study to test effect of RIC in thrombolysed 
patients with STEMI. Five-hundred nineteen STEMI patients 
were randomized to 4×5 min inflations/deflations of cuff on 
upper arm at the hospital before thrombolysis or sham control 
with deflated cuff application. There was a 17% reduction in 
enzymatic MI size (CK–MB and troponin T) in the RIC group.  

In the LIPSIA CONDITIONING study by Eitel et al. 
(2015) involving 333 STEMI patients, improved myocardial 
salvage was seen when IPost was combined with RIC. Neither 
IPost alone nor RIC + IPost reduced myocardial edema. No 
differences in MI size, MVO, or 6 month clinical endpoints 
(death, re-infarction, and heart failure at 6 months) were seen. 

Renal outcomes were assessed by Yamanaka et al. (2015) 
in a 94-STEMI patient study with the primary endpoint being 
incidence of contrast-induced AKI after administration of 
contrast medium. The odds ratio of CI-AKI in patients who 
received RIPC was 0.18 (95% confidence interval: 0.05-0.64; 
p=0.008). Lower incidence of ventricular arrhythmia was also 
noted in the RIC group within 24 hours of RIC. 

The study by Verouhis et al. (2016) has been the only 
neutral study of RIC in STEMI. The use of a non-standard RIC 
protocol comprised of variable numbers of RIC cycles (as many 
as 7-9) may have contributed to the neutral results. The primary 
endpoint of the study was infarct size expressed as myocardial 
salvage index determined by CMR on days 4-7 after PCI. There 
was no significant difference in myocardial salvage index 
between the RIPerC and PCI group.

Liu et al. (2016) performed the first study to assess the effect 
of RIC in STEMI patients through the use of CMR to detect 
early microvascular obstruction. The primary study endpoint 
was early microvascular obstruction measured by CMR. There 
was a significant decrease in early microvascular obstruction as 
assessed by CMR in the RIC group. 

Most recently, Gaspar et al. found that RIC administered 
prior to PPCI improved clinical outcomes following STEMI 
with reduced rates of HHF (Gaspar et al., 2018). This is the first 
prospectively designed study to investigate the effect of RIC 
on clinical outcomes following STEMI as a primary endpoint. 
RIC was shown to be beneficial in a combined clinical endpoint 
of cardiac mortality and hospitalization for HF. Improved EF 
recovery was also documented in patients with impaired LV 
function. In-hospital heart failure risk and need for diuretics, 
inotropes and/or intra-aortic balloon pump were reduced in the 
RIC group.  

In a large European multicenter study, the CONDI2/ERIC-
PPCI trial (ClinicalTrials.gov identifier: NCT02342522) is 
investigating whether RIC initiated prior to PPCI can reduce the 
rates of cardiac death and hospitalization for heart failure at 12 
months, the primary endpoint. It is a prospective, randomized-
controlled trial of 5200 STEMI patients undergoing PPCI. 
Patients have been randomized to either RIC or sham control. 
Secondary endpoints include: (i) rates of cardiac death and 
heart failure hospitalization at 30 days; (ii) rates of all-cause 
death, coronary revascularization, re-infarction, and stroke at 
30 days and at 12 months; (iii) TIMI flow post-PPCI; (iv) ST-
segment resolution on ECG taken at 90 minutes; (v) enzymatic 
MI size as assessed from a 48-h area-under-the-curve (AUC) 
high-sensitive troponin T (hsTrop-T) using blood samples 
collected at 0, 6, 12, 24, and 48 hours in a sub-study; and (vi) 
MI size as measured by cardiac magnetic resonance (CMR) 
scan performed at 6 months in a sub-study. It is well established 
that RIC can reduce MI size in STEMI patients who have 
received PPCI. It is not known whether this beneficial effect 
translates to improved clinical outcomes. The results of the 
CONDI2/ERIC-PPCI study, which will be available in summer 
2019, will establish whether limb RIC, as a non-invasive low-

cost intervention, can improve long-term clinical outcomes in 
STEMI patients treated with PPCI.

Challenges and future directions
Several post-hoc analyses of RIC in STEMI studies have shed 
further insights. In the post-hoc analysis by Pryds et al. (2016a) 
assessing the influence of pre-infarction angina and coronary 
collateral blood flow (CCBF) on the effectiveness of RIC in 
STEMI patients, pre-infarction angina was found not to modify 
RIC efficacy in STEMI patients undergoing PPCI. CCBF to 
the infarct-related artery seemed to affect the cardioprotective 
efficacy of RIC, with mean myocardial salvage index (MSI) 
increased in patients with CCBF versus without CCBF in 
the RIC with PPCI group. Pryds et al. (2016b) also found, 
in a separate post-hoc analysis, that RIC as adjunct to PPCI 
attenuated the detrimental effect of healthcare system delay on 
myocardial salvage in patients with STEMI. In patients with 
healthcare system delay >120 min, RIC with PPCI increased 
median MSI compared with PPCI alone, suggesting that the 
cardioprotective effect of RIC increases with the duration of 
ischemia. Sloth et al. (2015) found no significant difference in 
the effectiveness of RIC in subgroups of cardiovascular risk 
factors, lipid and glucose levels, and medication use in their 
post-hoc analysis. Sloth et al. (2016) also performed a post-
hoc analysis addressing the issue of cost-effectiveness of RIC 
in STEMI patients. They found that after 4 years of follow-
up, mean cumulative cardiovascular medical care costs were 
lower in the RIC group than in the control group, while mean 
major adverse cardiac and cerebrovascular event-free survival 
time was 0.30 years higher in the RIC than in the control group. 
These results suggest that RIC in STEMI appears to be a cost-
effective treatment strategy in patients with STEMI.

Daily RIC following STEMI 
Chronic renal failure patients undergoing hemodialysis are 
subjected to repeated episodes of acute myocardial ischemia 
resulting in myocardial stunning and chronic LV systolic 
impairment (Crowley, 2013). Limb RIC has been reported 
to attenuate ST-segment depression and prevent myocardial 
stunning in these patients (Crowley, 2013). 

One experimental study has demonstrated that performing 
limb RIC daily for a period of 28 days prevented adverse post-
MI LV remodeling in the rat heart (Wei & Xin, 2011). This 
approach has been tested in the clinical setting in two studies.

DREAM (Vanezis et al., 2018): This trial assessed the role 
of daily RIC in improving left ventricular ejection fraction 
(LVEF) recovery in patients with reduced LVEF (<45%) after 
STEMI treatment with PPCI. Patients were recruited from 
four UK hospitals and randomized to receive either 4 weeks 
of daily RIC or sham conditioning commencing on day 3 
post-PPCI. The primary endpoint was the improvement in 
LVEF over 4 months assessed by cardiac MRI. Seventy-three 
patients (38 cases, 35 controls) completed the study. There 
was no difference in the improvement in LVEF over 4 months 
between the treatment and control groups. No differences were 
seen in the secondary outcome measures of changes in infarct 
size and left ventricular end-diastolic and systolic volumes, 
major adverse cardiac and cerebral events, mean Kansas City 
Cardiomyopathy Questionnaire scores, or changes in N-terminal 
pro-brain natriuretic peptide levels. Daily RIC starting on day 
3 and continuing for 4 weeks following P-PCI for STEMI did 
not improve LVEF as assessed by CMR after 4 months when 
compared with a matched control group. The failure to begin 
RIC immediately prior to PPCI may have contributed to the 
neutral results of this study, and in this regard, the ongoing 
CRIC-RCT trial (NCT01817114), which is initiating RIC 
prior to PPCI and administering RIC daily for one month, may 
provide further insights.



Conditioning Medicine 2018 | www.conditionmed.org 239

Conditioning Medicine | 2018, 1(5):233-242 REVIEW ARTICLE

Summary and conclusions

RIC provides an easily applied and very effective endogenous 
s t ra tegy for  reducing MI s ize  fo l lowing acute  IRI . 
Despite extensive studies, the actual mechanistic pathway 
underlying RIC cardioprotection remains unclear; although 
a neurohormonal pathway is believed to be critical, the exact 
interplay between the neural and hormonal pathway is yet to 
be determined, and the identity of the cardioprotective humoral 
factors remains unknown. RIC has been successfully tested in 
a number of clinical settings including CABG surgery, elective 
PCI and more recently and most promisingly in STEMI patients 
undergoing PPCI. The translation of RIC into patient benefit has 
been elusive for CABG surgery patients, and this failure may 
be attributed to insufficient information on the optimum RIC 
protocol, the effects of co-medications of RIC cardioprotection 
such as propofol anesthesia and use of nitrates, and the presence 
of age and co-morbidities such as diabetes. RIC has the most 
promise for STEMI patients undergoing PPCI. The results of 
the CONDI2/PPCI study, due in Summer 2019, are eagerly 
awaited and will provide the definitive answer as to whether 
RIC can improve clinical outcomes and change clinical practice.
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