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Positive and negative conditioning in the neonatal 
brain
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Brain injury in the perinatal period occurs in many clinical settings, e.g. hypoxic-ischemic 
encephalopathy (HIE) in term infants, neonatal stroke, encephalopathy of prematurity, and 
infections. These insults often result in life-long disabilities including cerebral palsy, cognitive 
deficits, visual dysfunction, hearing impairments, and epilepsy. However, the success of clinical 
implementation of a broad array of potential neuroprotective strategies tested experimentally 
has been limited with the exception of therapeutic hypothermia (TH) used within hours of birth 
in term human babies with mild to moderate HIE. There is an extensive search for adjuvant 
therapeutic approaches to enhance the outcomes. One strategy is to modify susceptibility in 
the developing CNS by means of preconditioning or postconditioning using sublethal stress. 
The pre-clinical and clinical literature has shown that CNS immaturity at the time of ischemic 
insult plays a central role in the response to injury. Thus, better understanding of the molecular 
regulation of the endogenous vulnerability of the immature brain is needed. Further, the use 
of sublethal stressors of different origin may help shed light on mechanistic similarities and 
distinctions beween conditioning strategies. In this review we discuss the mechanisms of 
protection that are achieved by an interplay of changes on the systemic level and brain level, 
and via changes of intracellular and mitochondrial signaling. We also discuss the barriers to 
improving our understanding of how brain immaturity and the type of insult—hypoxic, ischemic 
or inflammatory—affect the efficacy of conditioning efforts in the immature brain.
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Introduction
Brain injury in the perinatal period occurs in many clinical 
settings, e.g. hypoxic-ischemic encephalopathy (HIE) in term 
infants, neonatal stroke, encephalopathy of prematurity,  and 
infections (Hagberg et al., 2015). These insults often result in 
life-long disabilities including cerebral palsy, cognitive deficits, 
visual dysfunction, hearing impairments and epilepsy (Wood 
et al., 2000; Delobel-Ayoub et al., 2009; Fernandez-Lopez 
et al., 2014; Hagberg et al., 2016). A broad array of potential 
neuroprotective strategies has been tested pre-clinically, 
targeting various signaling pathways to attenuate neuronal 
cell death and/or limit toxic aspects of oxidative stress and 
inflammation caused by injury. However, the success of clinical 
implementation has been limited. Therapeutic hypothermia 
(TH) used within hours of birth in term human babies with HIE 
has been the only successful treatment thus far (Edwards et al., 
2010). TH has been approved for treating HIE since 2010 in at-
term human neonates and it has become the standard of care in 
many countries. However, beneficial effects of TH are limited 
to only mild-to-moderate brain injury, and many infants still 
develop significant adverse outcomes. There is an extensive 
search for adjuvant therapeutic approaches to improve the 
outcomes. One strategy is to better understand the molecular 
regulation of the endogenous vulnerability of the immature 
brain by using sublethal stressors of different origin. The present 
review will focus on various ways to modify susceptibility in 
the developing CNS by means of preconditioning (pre-C) or 
postconditioning (post-C) stressors.

Conditioning
A sublethal  s tress (e.g. ,  hypoxia,  ischemia) or  drug 
administration can induce resistance to a subsequent potentially 
lethal insult, a phenomenon known as pre-C (Janoff, 1964). 
Pre-C was first described in the heart (Murry et al., 1986) but 
can be induced in most organs, including the brain (Chen and 
Simon, 1997; Dirnagl et al., 2003; Gidday, 2006; Thompson 
et al., 2015). In the adult, the application of pre-C and post-C 
stressors have been extensively studied as protective strategies 
in models of cerebral ischemia. Multiple lines of evidence have 
suggested that protection is achieved by an array of mechanisms 
at the systemic level, at the neurovascular unit interface, 
and by modifying cell-cell interactions and intracellular 
signalling and, in particular, mitochondrial function. Altered 
temporo-spatial patterns of cerebral blood flow (CBF) upon 
reperfusion, immune-neurovascular interactions, suppression 
of neuroinflammation, and changes in mitochondrial function 
in injured adult brain are among the most important changes 
caused by pre-C and post-C stressors.

Pre-C seems to be particularly robust in the immature 
brain (Gidday et al., 1994). In most studies, conditioning is 
induced by exposure to the stressor or drug some time prior 
to the severe insult (usually > 6-12 h), but tolerance can 
also be triggered by exposure to the stressor after the main 
insult, referred to as post-C (Zhao et al., 2006; Teo et al., 
2015). Conditioning stimuli can both reduce immature brain 
vulnerability (positive conditioning; Gidday et al., 1994) or 
increase vulnerability (negative conditioning; Eklind et al., 
2001). Furthermore, subthreshold stress in a peripheral organ 
(e.g. repeated limb ischemia) can induce conditioning in the 
developing brain, a phenomenon called remote pre-C or post-C 
(R-pre-C or R-post-C) (Tropak et al., 2011; Khan et al., 2015; 
Ezzati et al., 2016). Conditioning can be induced by sublethal 
hypoxia, ischemia, epileptic seizures, hyperbaric oxygenation, 
hyperthermia, toll-like receptor (TLR) agonists, or drugs such as 
magnesium sulphate, glucocorticoids or anesthetics (e.g. xenon) 
(Barks et al., 1991; Gidday et al., 1994; Chen and Simon, 
1997; Eklind et al., 2001; Dirnagl et al., 2003; Gidday, 2006; 
Koning et al., 2017). As in the adult brain, several pre-C and 

post-C mechanisms have been proposed to alter vulnerability 
in the developing brain. Some of the different regimens of 
conditioning applied in the immature brain are summarized in 
Table 1.

Pre-C and post-C as modulators of the neurovascular unit 
in the injured immature brain
In the adult, CBF is not affected by pre-C itself, but the decrease 
in CBF during a subsequent episode of ischemia is attenuated 
(Nakamura et al., 2006). Similarly, we have found that hypoxic 
pre-C in the immature rat attenuates the drop in CBF during 
a severe HI insult induced 24 h after pre-C (Gustavsson et al., 
2007). This effect was associated with upregulation of vascular 
genes (e.g. Angpt2, VEGF, Flt1, Kdr, Pdgfra) and an increase in 
vascular density. Recently, it was shown that the pre-C-induced 
preservation of vascular density after HI was accompanied 
by an increase in VEGFR2, and the pre-C effect was reversed 
by the angiotensin II receptor subtype 2 (AT2-R) inhibitor 
(PD123319), offering support for a vascular component in 
pre-C (Lopez-Aguilera et al., 2012). The pre-C effect of 
erythropoietin (EPO) could also at least partly be explained 
by vascular effects. Lipopolysaccharide (LPS)-induced pre-C 
diminished the extent of secondary perfusion deficits (rather 
than primary perfusion deficits) in adult stroke by induction of 
endothelial nitric oxide synthase (eNOS) (Dawson et al., 1999), 
and NOS inhibition by L-NAME abolished the pre-C effects, 
indicating a role for NOS in LPS-mediated positive pre-C. 
Similarly, in neonatal rats, Akt-mediated eNOS upregulation in 
neurons and vascular endothelial cells was required for LPS-
induced positive pre-C against HI (Lin et al., 2010). However, 
in hypoxic pre-C, the CBF was not affected by L-nitroarginine 
(Gustavsson et al., 2007), implying NO has other targets besides 
the vasculature. There is no data yet in adult or immature brains 
with ischemia models demonstrating that pre-C neuroprotection 
predominantly depends on vascular adaptations (c.f. Gidday, 
2006). However, in an excitotoxicity model, the protective 
effect of hypoxic pre-C was reversed by VEGFR2 antibodies, 
and VEGF reduced brain injury to a similar extent as hypoxic 
pre-C (Laudenbach et al., 2007). However, we can not rule out 
non-vascular actions mediated by VEGF-VEGFR2, considering 
VEGF also has neurotropic effects. Furthermore, the pre-C 
effect of MgSO4 was not associated with improvement in CBF 
either before or during a subsequent period of HI (Koning et al., 
2017), suggesting that vascular modifications are not always 
required for induction of pre-C in the immature brain. 

Disruption of blood-brain barrier (BBB) integrity is a 
major contributor to the pathophysiology of stroke. In adult 
stroke models, brief repetitive hypoxic episodes (Stowe et al., 
2011) and exercise pre-C (Davis et al., 2007) were shown to 
limit BBB dysfunction, in part by downregulating endothelial 
adhesion molecules, limiting leukocyte infiltration, as well 
as by preserving basal lamina. The use of low thrombin 
concentrations (thrombin preconditioning; TPC) before middle 
cerebral artery occlusion (MCAO) attenuated brain edema, 
BBB disruption and brain hemorrhage (Stetler et al., 2009). 
Effects were mediated by mechanisms that include induction of 
heat shock proteins, particularly HSP27/HSP25, modulation of 
downstream cellular protective p44/42 MAPK/p90RSK/HSP25 
pathways and protease-activated receptors (PAR) (Stetler et 
al., 2009). Pre-C also enhanced recognition and chaperoning 
of damaged or misfolded proteins, stabilizing actin filaments 
and limiting the stress-response cascade upstream of the 
mitochondrial cell death machinery (Stetler et al., 2009; Shi et 
al., 2017). 

Literature has shown that BBB integrity greatly depends 
on the maturational stage of the brain at the time of stroke 
(Fernandez-Lopez et al., 2012; Kratzer et al., 2014), as well as 
the injury model used (Fernandez-Lopez et al., 2012; Ek et al., 



Conditioning Medicine 2018 | www.conditionmed.org 281

Conditioning Medicine | 2018, 1(6):279-293 REVIEW ARTICLE

2015; Mallard and Vexler, 2015). Individual components of the 
neurovascular unit, including endothelial cells, the extracellular 
matrix (ECM) and glial cells, undergo unsynchronized 
developmental changes and increases astrocytic and pericyte 
vessel coverage in postnatal brain, affecting both acute 
structural-functional BBB responses and delayed angiogenic 
processes. 

Data on the role of the neurovascular unit in mediating pre-C 
in neonates, while scarce, suggest that pre-C protects the ECM 
and BBB integrity. One study showed that administration of 
plasminogen activator inhibitor-1 (PAI-1) before HI reduced 
brain injury in a dose-dependent manner (Yang et al., 2009). 
Protection was preceded by a marked reduction of tissue-type 
plasminogen activator (tPA) and urokinase-type plasminogen 
activator, affecting MMP-9 activation, brain edema and 
BBB permeability, and was associated with reduced axonal 
degeneration (Yang et al., 2009). Another study demonstrated 
that intra-cerebroventricular injection of a stable-mutant form 
of PAI-1 attenuates pro-inflammatory response and BBB 

disruption in, an LPS injury model followed by HI in P7 rats 
(Yang et al., 2013). Hyperthermic pre-C also prevented BBB 
disruption produced by HI in newborn rat (Ikeda et al., 1999). 

Several studies have suggested that inflammation during 
gestation can prime the vasculature, producing long-
lasting changes in BBB function but not necessarily short-
term changes in BBB integrity. While LPS pre-C followed 
by HI induced significant changes in BBB integrity in P12 
rats, there was little evidence of acute neutrophil infiltration 
into the brain or increased albumin leakage after a single 
injection of LPS (Brochu et al., 2011). Newborn rats given 
multiple intraperitoneal LPS injections at P0-P8 did not have 
significantly increased sucrose leakage through the BBB at 
either P9 or P20 (Stolp et al., 2011), but strikingly, LPS led 
to significantly higher brain sucrose concentration during 
adulthood (Stolp et al., 2005). Deficiency in omega-3 lipids 
during gestation negatively conditioned pups by making them 
more prone to HI postnatally by enhancing neuroinflammation, 
adversely affecting the vasculature and BBB integrity (Zhang 

Abbreviations: Hypoxia-ischemia (HI); hypoxic-ischemic encephalopathy (HIE); lipopolysaccharide (LPS); magnetic resonance spectroscopy 
(MRS); magnesium sulphate (MgSO4); negative conditioning (-); polyinosinic: polycytidylic acid (poly I:C); positive conditioning (+).

Table 1. Examples of conditioning paradigms in the developing brain.
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et al., 2010; Zhang et al., 2015). Together, these results suggest 
that the brain ECM plays a modulatory role in BBB integrity 
and injury after neonatal HI. 

Innate immune system modulation as positive and negative 
pre-C in the immature brain
Data have been accumulating on the role of innate immunity 
in injury to the immature brain and the possibility to attenuate 
injury by modifying immune responses. In utero infections, 
neonatal sepsis and chorioamnionitis, are linked to both preterm 
birth and neurological deficits later in life (Shatrov et al., 2010; 
Salas et al., 2013; Soraisham et al., 2013; Shankaran et al., 
2014). Children born with bacteremia very preterm perform 
worse on neurocognitive tests in the first weeks of life (Bright 
et al., 2017) and demonstrate neurological dysfunction at school 
age (Kavas et al., 2017). 

Induction of cerebral innate immunity via TLR has been 
thoroughly established in the perinatal brain injury field (Mallard 
et al., 2009). TLRs are innate immune receptors that sense 
“pathogen-associated molecular pattern molecules” (PAMP) 
expressed by viral and bacterial micro-organisms or “damage-
associated molecular pattern molecules” (DAMP) that are 
released from injured tissue. Individual TLRs differ in their 
ligand specificity, signal transduction pathways they activate, 
and types of infection to which they respond. TLR4 mediates 
gram-negative bacterial infections (induced by LPS/endotoxin), 
TLR2 is mostly associated with gram-positive bacteria 
(mimicked by i.p. injection of the synthetic lipopeptide Pam(3)
CSK(4); PAM), and TLR3 mediates viral infections (mimicked 
by i.p. injection of poly I:C). Several studies have shown that 
excessive activation of TLRs, either by bacterial stimuli or by 
injury, can have direct negative effects on the developing brain. 
For example, chronic exposure to LPS or PAM impairs both 
grey and white matter development in neonatal mice (Du et 
al., 2011), and TLR2 gene-deficient mice are protected from 
neonatal HI (Stridh et al., 2011). There is also growing evidence 
demonstrating that TLR-mediated mechanisms can modulate 
the vulnerability of the immature brain to other insults, resulting 
in either positive or negative pre-C. Negative pre-C effects 
on HI neonatal brain injury have been observed following 
activation of several TLR subtypes, including TLR2 (Falck et 
al., 2017; Mottahedin et al., 2017), TLR3 (Stridh et al., 2013) 
and TLR4 (Eklind et al., 2001; Eklind et al., 2005; Wang et al., 
2007) (Table 1). Immune challenges during gestation have also 
demonstrated a broad range of negative conditioning effects in 
maturing rodents. Indeed, LPS administration during gestation 
increased brain cytokine levels and made pups more vulnerable 
to HI at P1 (Girard et al., 2008). The LPS-induced increased 
vulnerability to neonatal HI (negative pre-C) is dependent 
on the TLR adaptors MyD88 (Wang et al., 2009) and TRIF 
(Stridh et al., 2013), while in adult stroke, positive pre-C after 
TLR4 signaling depends on TRIF but not on MyD88 signaling 
(Vartanian et al., 2011), emphasizing age-dependent differences 
in immune pre-C mechanisms. 

The time interval between TLR activation and the main 
insult is another important factor that determines whether there 
are positive or negative immune pre-C effects on brain injury. 
For example, when administered 2-4 days before MCAO in 
adult rats, LPS enhanced protection, with maximal effect at 
3 days, whereas no protection was observed when LPS was 
administered 1 day or 1 week before MCAO (Tasaki et al., 
1997). The magnitude of TLR activation is also important in 
determining positive or negative outcome, with higher doses of 
LPS abolishing positive pre-C in MCAO-induced injury (Bordet 
et al., 2000). Similar to the adult, we have shown in neonates 
that, depending on the time interval between insults, the same 
dose of LPS can both increase and decrease vulnerability to 
HI in P7 rat pups. Administration of a low LPS dose 4 h, 6 h, 

or 3 days before HI exacerbated injury (Eklind et al., 2001) 
and produced short-term memory impairment (Ikeda et al., 
2004), while a 24-h interval was protective (Eklind et al., 
2005). Literature is also emerging on the lasting effects of 
brain reprogramming following gestational immune challenges 
affecting susceptibility to injury during adulthood. Remarkably, 
while intrauterine LPS administration sensitized (negative 
pre-C) to early postnatal HI, it served as a protective pre-C 
stimulus in adult HI (Wang et al., 2007). 

The need for new protein synthesis for induction of pre-C 
has been shown in many settings including LPS-induced effects 
(Bordet et al., 2000). Protective pre-C LPS effects on MCAO 
injury were blocked by dexamethasone or indomethacin 
administration, supporting a role for inflammatory mechanisms 
(Bordet et al., 2000), whereas we reported that up-regulation 
of endogenous corticosterone protects the immature brain 
in LPS-induced pre-C 24 h prior to HI (Ikeda et al., 2006). 
Using microarray techniques, we compared the cerebral gene 
response following positive and negative LPS-induced pre-C. 
We showed that the increased vulnerability to HI (negative 
pre-C) seen at 6 h after LPS is associated with significant gene 
regulation, including genes associated with protein metabolism, 
immune and inflammatory response, chemotaxis, and cell 
death (Eklind et al., 2006). These changes in inflammatory 
genes were very prominent and distinct from the positive pre-C 
scenario (i.e., 24 h after LPS administration) (Eklind et al., 
2006). Further, expression of transcript changes differed from 
those induced by HI only (Hedtjarn et al., 2004; Hedtjarn et 
al., 2004), indicating specificity in the pre-C response. Further 
evidence of involvement of immune responses in sensitizing 
effects on the immature brain was obtained in a study that 
utilized immunomodulator IDR-1018 in P9 mice subjected to 
LPS combined with HI (Bolouri et al., 2014). Importantly, IDR-
1018 was protective when administered as pre-treatment or 
post-treatment (Bolouri et al., 2014); however, whether pre-C-
specific responses were affected remains to be determined.

The source of the inflammatory response in the immature 
brain associated with TLR-induced pre-C has not been fully 
elucidated. While it is clear that microglia, the endogenous 
brain immune cells, respond to antenatal and postnatal systemic 
TLR activation, as well as non-infectious inflammation, the 
mechanisms that link peripheral signals to activated microglia 
remain obscure. We showed that microglia are the predominant 
source of TLR2 expression during normal postnatal brain 
development but that LPS stimulation and intracerebral IL-
1β injection in P9-P10 mice produce stimuli-dependent 
induction of inflammatory mediators (Lalancette-Hebert et 
al., 2017). Administration of LPS at P5 leads to a transient 
increase in absolute number and cell density of Iba1-positive 
microglia, as well as a persistent alteration in hippocampal 
inflammatory status in microglia (Smith et al., 2014). Further, 
repeated injections of PAM at P3-P11 decreased the volume 
of cerebral grey and white matter in association with elevated 
levels of several pro-inflammatory cytokines and chemokines 
in the brain as well as increased microglial density (Du et al., 
2011). In fetal sheep, LPS administered either to the fetus 
(Duncan et al., 2002; Mallard et al., 2003; Dean et al., 2011) 
or into the amniotic fluid (Nitsos et al., 2006) at a gestational 
age comparable to that of the preterm human infant led to 
CNS inflammation and increased numbers of microglia with 
activated morphologic phenotype. Comparative analysis of 
TLR2 and TLR4 stimulation has shown stimulus-dependent 
patterns of cytokine induction and leukocyte infiltration into 
immature brain (Mottahedin et al., 2017). The magnitude and 
particulars of induced infiltration of CD11+/CD45hi leukocytes 
were particularly prominent following PAM administration 
(Mottahedin et al., 2017). The role of increased microglia 
proliferation and leukocyte trafficking in preconditioning 
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remains unclear, but, interestingly, it was recently shown that 
positive LPS pre-C induces a Ly6Chi monocyte response that 
protects the brain after MCAO (Garcia-Bonilla et al., 2018).

Intracellular mechanisms of hypoxic pre-C in the immature 
brain
There is a vast amount of information on intracellular 
mechanisms of pre-C in response to various stress stimuli, and 
there seems to be a high degree of similarity across organs and 
species. It appears that some general endogenously protective 
cellular strategies have evolved in order to cope with dangerous 
exposures such as hypoxia/ischemia, substrate deficiency 
and infections. There isn't a single neuroprotective factor, but 
pre-C is the result of the combined action of multiple, partly 
overlapping cellular and molecular events that counteracts cell 
death, reduces the injurious effects of inflammation, adapts 
mitochondrial metabolism and enhances regenerative processes  
(Dirnagl et al., 2003; Gidday, 2006). In some reviews, the 
different components involved in pre-C have been divided into 
sensors, transducers, and effectors (Dirnagl and Meisel, 2008).  
However, in the immature brain, the sequence of events is still 
uncertain, but an approximate staging of the mechanisms is 
indicated in Figure 1.

Gene activation and protein translation
It has been shown that pre-C induces a number of potentially 
neuroprotective genes in the brain (Jones and Bergeron, 2001; 
Bernaudin et al., 2002; Gustavsson et al., 2007), indicating 
that gene programming is important for development of pre-C 

also in the immature brain in addition to posttranslational and 
other adaptations (Gidday, 2006). Studies in the adult brain 
demonstrate that ischemic pre-C is inhibited by the protein 
translational inhibitor cycloheximide (Barone et al., 1998). 
Xenon-induced pre-C in the neonatal brain is also inhibited by 
cycloheximide (Ma et al., 2006), indicating that pre-C depends 
on gene transcription and de novo protein synthesis.  However, 
no studies using transcription or translation inhibitors have been 
performed for hypoxic or other types of pre-C in the developing 
brain. 

Hypoxic or ischemic pre-C induces a number of transcription 
factors including activating protein 1 (AP1), cyclic AMP 
response-element binding-protein (CREB), nuclear factor kappa 
B (NF-κB), early growth response 1 (EGR1), and the redox-
regulated transcriptional activator specificity protein 1 (SP1) 
(Gidday, 2006). However, the best characterized transcription 
factor induced after hypoxic pre-C is probably hypoxia-
inducible factor-1α (HIF-1α), which is strongly associated 
with preconditioning in the immature brain (Bergeron et al., 
2000; Sharp and Bernaudin, 2004; Sheldon et al., 2009). 
Selective neuronal HIF-1α gene deletion blocked hypoxic 
pre-C in mice (Sheldon et al., 2009), indicating that pre-C 
depends on HIF-1α.  However, the interpretation is complicated 
by the fact that HIF-1α gene deficiency confers heightened 
vulnerability also in response to the HI insult itself (Sheldon 
et al., 2009), and it is difficult to tell if HIF-1α is reducing 
vulnerability during the pre-C phase or during the HI insult or 
both. Ischemic pre-C in the neonatal brain was associated with 
a marked and sustained activation of CREB after 24 h (Lee 

Figure 1. Intracellular mechanisms of preconditioning in neonatal brain. Abbreviations: Activator protein-1 (AP-1); AMP-activated protein 
kinase (AMPK); cellular inhibitor of apoptosis-1 (cIAP1); cyclic AMP response-element binding-protein (CREB); early growth response 1 (EGR1); 
erythropoietin (EPO); hypoxia-inducible factor-1α (HIF-1α); Janus kinase 2 (JAK2); mitochondrial permeabilization (MP); nicotinamide adenine 
dinucleotide (NAD); nicotinamide phosphoribosyltransferase (Nampt); nitric oxide synthase (NOS); nitric oxide (NO); nuclear factor kappa 
B (NFκB); peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α); phosphokinase B (PKB)/AKT; phosphoinositide 
3 kinase (PI3K); phosphokinase C (PKC);  reactive oxygen species (ROS); signal transducer and activator of transcription (STATs) specificity 
protein 1 (SP1); vascular endothelial growth factor (VEGF).
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et al., 2004). Intracerebroventricular infusions of antisense 
CREB oligodeoxynucleotides significantly reduced the pre-C 
neuroprotection and induction of CREB signaling with rolipram 
24 h before HI protected newborn rats, supporting a role of 
CREB in neonatal pre-C (Lee et al., 2004).

Survival kinases
Several so-called survival kinases (e.g. protein kinase Cε 
(PKCε), phosphoinositide 3 kinase (PI3K)–AKT, and glycogen 
synthase kinase-3β (GSK3β)) are upregulated in the immature 
brain after hypoxic pre-C (Gustavsson et al., 2007) (Figure 
1). PKCε phosphorylates and activates mitoKATP (see below) 
in the inner mitochondrial membrane (Raval et al., 2007; 
Bednarczyk, 2009), and inhibition of PKCε has been shown 
to reverse pre-C protection (Raval et al., 2007). PKCε is also 
critical for maintenance of mitochondrial nicotinamide adenine 
dinucleotide (NAD) or nicotinamide phosphoribosyltransferase 
(Nampt) pools (Morris-Blanco et al., 2014) known to be critical 
for immature brain integrity (Robertson et al., 2004; Fiskum et 
al., 2008; Galindo et al., 2017).

The PI3K/PKB/Akt/GSK3β pathway has been shown to 
reduce brain vulnerability in ischemia (Zhao et al., 2006) and 
in the neonatal brain  (Yin et al., 2007; Zhao et al., 2013), and 
has been implicated in pre-C of neuronal cells (Hillion et al., 
2006) and the neonatal brain (Feng et al., 2010). Activation of 
this pathway leads to phosphorylation of  Bcl-2 family proteins, 
decreases the pro- vs. anti-apoptotic balance, and prevents Bax-
dependent mitochondrial permeabilization (Baines et al., 2003; 
Brywe et al., 2005; Maurer et al., 2006; Dirnagl and Meisel, 
2008; Feng et al., 2010), which is implicated as an important 
cell death mechanism in the neonatal brain (Wang et al., 2009) 
(Figure 1). Neuroprotection induced by hypoxic pre-C of the 
neonatal brain also induces changes in mRNA for Bcl-2 family 
proteins and other apoptosis-related proteins enforcing anti-cell 
death actions (Gustavsson et al., 2007). Recently, hypoxic pre-C 
was shown to also counteract caspase-Bax-dependent apoptosis 
induced by propofol (Lv et al., 2018). The cellular inhibitor of 
apoptosis-1 (cIAP1) is also important in pre-C of the immature 
brain, offering further support of the apoptotic pathway (Lin et 
al., 2013). Inhibition of PI3K/Akt using LY294002 attenuated 
pre-C neuroprotection and promoted the expression of NF-
kappa-B, COX-2, and CD68. Proteomic microarray analysis 
revealed that pre-C inhibited expression of proinflammatory 
cytokines induced by HI (Yin et al., 2007).

The PI3K/AKT pathway is also stimulated by EPO which, 
in spite of being a HIF-1 target gene, was only moderately 
upregulated at the gene level (mainly in astrocytes) early after 
hypoxic pre-C in the immature brain compared to other organs 
(Bernaudin et al., 2002). The level of the EPO protein was not 
increased after hypoxic pre-C, at least not 0.5 h, 6 h, 12 h or 
24 h after pre-C (Jones and Bergeron, 2001). However, EPO 
was induced by pharmacologic pre-C with deferoxamine (Mu 
et al., 2005) or MgSO4 (Koning et al., 2017), suggesting that 
EPO certainly could contribute to the development of tolerance, 
especially as it is well known to exert protective effects in the 
immature brain (Rangarajan and Juul, 2014). Furthermore, in 
the adult brain, EPO itself induces pre-C, and the protective 
effect of hypoxic pre-C is reversed by soluble EPO receptors 
(Prass et al., 2003) and EPO antisense (Liu et al., 2005), 
supporting its importance at least in some forms of pre-C.  

Involvement of mitochondria: energy metabolism, mitoKATP 
and biogenesis/mitophagy
In the adult brain and heart, ischemic or hypoxic pre-C 
prevents mitochondrial swelling, protects membrane integrity, 
reduces ATP consumption and improves mitochondrial energy 
metabolism during a subsequent episode of cerebral ischemia 
(Zhang et al., 2003; Dirnagl and Meisel, 2008). Sirt1 and 

HSP90 have been proposed to be involved in mitochondrial 
protection via activation of PKCε (Thompson et al., 2015). In 
the neonatal brain, hypoxic pre-C also preserves mitochondrial 
function and attenuates the primary energy depletion during a 
subsequent period of HI (Brucklacher et al., 2002), and there is 
some evidence that AMP-activated protein kinase (AMPK) is 
involved (Rousset et al., 2015).

We found recently that a pre-C bolus of magnesium 
sulphate (MgSO4) applied 12 h to 6 days prior to neonatal HI 
reduces brain injury dramatically (Table 1). The protection 
was accompanied by downregulation of genes for metabolic 
enzymes, reduction of succinate during the subsequent HI, as 
well as preservation of high energy phosphates, mitochondrial 
respiration and attenuation of mitochondrial reactive oxygen 
species (ROS) production (Koning et al., 2017; Koning et al., 
2018). It is important to emphasize that the serum levels of 
magnesium were normalized at the time of the HI insult and the 
treatment was ineffective if applied immediately prior, during 
or after the insult, suggesting that a pre-C mechanism is at play 
rather than a pre-treatment effect during HI (c.f. Riepe et al., 
1997). 

Opening of mitoKATP channels leads to influx of K+ into 
the mitochondrial matrix, increased oxygen consumption, and 
depolarization of the inner membrane (moderate uncoupling), 
reducing production of ROS mitochondrial Ca2+ accumulation, 
and Bax-dependent mitochondrial permeabilization (Bajgar 
et al., 2001; Liu et al., 2002; Bednarczyk, 2009). Brain 
mitochondria have higher concentrations of mitoKATP than do 
liver or heart mitochondria (Bajgar et al., 2001). Hypoxic pre-C 
in the neonatal brain induced upregulation of the protein level of 
the Kir6.2 isoform and enhanced current activities of mitoKATP 
channels (Sun et al., 2015). The mitoKATP opener diazoxide 
also reduced injury in the immature brain whereas inhibition 
of mitoKATP (using tolbutamide) blocked the protective effects 
of pre-C (Rajapakse et al., 2002; Wang et al., 2011; Sun et al., 
2015). 

Mitophagy of injured mitochondria and their replacement 
through biogenesis is an important process to maintain viability 
of postmitotic cells. A compelling notion is that cells with 
renewed mitochondria might be more resistant to severe stress. 
Ischemic pre-C of the heart depends on mitophagy through a 
parkin–SQSTM1-dependent mechanism (Huang et al., 2011), 
and mitophagy was recently also suggested to be involved 
in pre-C of neurons (Lizama et al., 2018). Under hypoxic 
conditions, HIF-1α (see above)  induces BNIP3L-dependent and 
BNIP3-dependent mitophagy, probably through interaction with 
the outer mitochondrial membrane protein FUNDC1 (Ashrafi 
and Schwarz, 2013). Exposure of mice to hypoxic pre-C is 
also reported to increase mitochondrial DNA content, PGC-1α 
activity, and subsequent mitochondrial biogenesis (Gutsaeva et 
al., 2008). Hypoxic pre-C of mice induced expression of mRNA 
for Bnip3l and Bnip3, accompanied by an increase in the 
concentrations of the biogenesis markers PGC-1α and nuclear 
respiratory factors 1 and 2, suggesting that the mitophagy–
biogenesis cycle might also be associated with pre-C of the 
immature brain (Gustavsson et al., 2008). 

In summary, there is strong evidence that signaling cascades 
induced by pre-C converge on mitochondria in the brain of 
both adults (Liu et al., 2002) and neonates (Busija et al., 2005; 
Sun et al., 2015), as well as in other organs (Boengler et al., 
2018). Interestingly,  recent results in adult brain suggest that 
cross talk between mitochondria and endoplasmic reticulum 
with regard to Ca2+ regulation may be an additional critical 
mechanistic component in pre-C (Sisalli et al., 2015) that has to 
be addressed also in the immature brain in the future.

Nitric oxide (NO)-mediated conditioning
Nitric oxide (NO) synthase is upregulated after pre-C in the 
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immature brain and generates NO and nitrite (Gidday et al., 
1999; Gustavsson et al., 2007), and this inhibits production of 
ROS at complex 1 of the electron transport chain, improves 
mitochondrial respiration at complex II-IV and in turn reduces 
the threshold of mitochondrial permeabilization in heart and 
liver (Shiva et al., 2007). Indeed, non-specific inhibitors of NO 
synthase block hypoxic pre-C in the immature brain (Gidday 
et al., 1999). However, specific blockade of nNOS or iNOS 
had no effect whereas eNOS inhibition prevented hypoxic 
pre-C (Gidday et al., 1999), indicating that vascular factors are 
involved. 

R-pre-C and R-post-C as conditioning paradigms in the 
immature brain
R-pre-C and R-post-C refer to a sublethal shear stress therapy 
by repetitive inflation-deflation of a blood pressure cuff on 
limbs before or after a major insult. R-pre-C and R-post-C have 
been demonstrated to be safe and are being actively studied in 
adult animal stroke models (Hess et al., 2013; Hess et al., 2015) 
and in small stroke clinical trials. A growing number of studies 
show that eNOS/NO/nitrite play an important role in improved 
perfusion in mice after stroke, and in protection conveyed by 
R-post-C (Hess et al., 2016) and effectiveness after embolic 
stroke in male and ovariectomized female mice (Hoda et al., 
2014). Chronic R-post-C was recently demonstrated to induce 
vascular remodeling and protection in the adult (Khan et al., 
2018). R-post-C was found effective alone and in combination 
with intravenous tPA in embolic stroke in adult mice (Hoda et 
al., 2012). 

In neonates, while potential for protection by R-post-C 
has been demonstrated in a few studies, efficacy and the 
mechanisms of R-pre-C and R-post-C are not sufficiently 
understood. Available data have been discussed extensively in a 
recent review in this journal (Adstamongkonkul and Hess, 2017) 
and will not be discussed in detail in this review. As examples, 
in P10 rats subjected to HI, R-post-C induced immediately 
after the end of hypoxia by four 10-min ischemia/reperfusion 
cycles on both hind limbs reduced infarct volume at 48 h and 
improved functional outcomes at 4 weeks after HI, in part via 
involvement of the opioid receptor and PI3K/Akt signaling 
pathways (Zhou et al., 2011). In a piglet asphyxia model, 
immediate R-post-C reduced brain nitrotyrosine formation 
(Rocha-Ferreira et al., 2016) and protected oligodendrocytes in 
the corpus callosum and in the periventricular white matter but 
did not attenuate injury in grey matter (Ezzati et al., 2016). 

In humans, effects of early and late R-pre-C were determined 
in infants who underwent surgery for congenital heart disease. 
In that pilot randomized controlled trial, R-pre-C proved to be 
feasible but did not produce significant differences in acute 
outcomes (Guerra et al., 2017). In another study conducted 
in neonates to 17-year-old children who underwent cardiac 
surgery, R-pre-C was not associated with improvements in 
clinical outcomes or physiological markers (McCrindle et 
al., 2014). Given the complexity of the studied effects and 
dependence of the effects on the type and severity of insult, 
age, the timing and exact protocol(s) of conditioning, additional 
animal studies and larger clinical trials are necessary to uncover 
the extent of the therapeutic potential for R-pre-C and R-post-C 
in the immature brain.

Noble gases and anesthetics as a pre-C strategy in injured 
immature brain
Anesthetic agents and noble gases have been tested for their 
efficacy in pre-C and post-C. The pros for such an approach are 
that anesthetic agents are commonly used in injured neonates 
and may provide additional benefits. The cons are that newborn 
brain is susceptible not only to widespread neuronal apoptosis 
resultant from ischemic, oxidative and excitotoxic injury 

(Ikonomidou et al., 1989; Ikonomidou et al., 1999; Hu et al., 
2000) but also neuronal apoptosis induced by anesthetic agents 
(Olney et al., 2004; Schifilliti et al., 2010). In fact, models of 
neonatal toxicity were developed using prolonged exposure 
to the anesthetic agents isoflurane and sevoflurane (Shu et al., 
2010). 

Xenon (Xe), a noble gas that has been recognized as an 
anesthetic for more than 50 years, was found less neurotoxic to 
the developing brain compared to other anesthetics, effective 
as an anesthetic adjuvant in animals, and safe as a conditioning 
strategy in clinical trials in neonates with neurologic injury 
(Azzopardi et al., 2016; Alam et al., 2017). Xe has a small 
blood-gas partition coefficient, readily crosses the BBB and 
does not cause hemodynamic depression. Over the years, Xe 
was shown to exert neuroprotection (Preckel et al., 2000; Banks 
et al., 2010) and cardioprotection (Pagel, 2010; Schwiebert et 
al., 2010) in different adult animal models. Yet, Xe is not widely 
applied in clinical practice mainly because of its high cost and 
requirement for highly trained personnel.

Several mechanisms of Xe action have been identified. In 
neuronal-glial cell co-cultures subjected to oxygen-glucose 
deprivation, Xe pre-C produced a concentration-dependent 
reduction of lactate dehydrogenase release, an effect abolished 
by a protein synthesis inhibitor, and decreased cell death (Ma 
et al., 2006). Xe-induced pre-C reduced infarct size during 
subchronic injury and provided long-term neurological 
functional improvement in P7 rats subjected to HI (Ma et 
al., 2006). Xe pre-C and post-C was suggested to produce 
protection via induction of pro-survival proteins in models of 
neonatal HI (Ma et al., 2006), asphyxia (Luo et al., 2008) and 
prolonged (toxic) isoflurane exposure (Shu et al., 2010), such 
as Bcl-2 and BDNF. Xe enhanced CREB phosphorylation (Luo 
et al., 2008) and activity-dependent neuroprotective protein 
(ADNP) (Cattano et al., 2008) and decreased cytochrome-C 
release from mitochondria. Xe potently non-competitively 
inhibited NMDA receptors, with only minor effects on 
GABA receptors and non-NMDA receptors (Franks et al., 
1998).  At high dose, Xe inhibited the Ca2+-ATPase in rat 
brain synaptic plasma membranes (Franks et al., 1995) by 
inducing conformational changes in the lipid membrane (Lopez 
and Kosk-Kosicka, 1995). Xe administration alone showed 
neuroprotection after HI in neonatal rats (Dingley et al., 2006; 
Zhuang et al., 2012) and newborn pigs (Chakkarapani et al., 
2010) as a post-C approach. Side-by-side use of Xe and hypoxic 
pre-C demonstrated positive pre-C by Xe but negative effects of 
hypoxic pre-C (i.e., injury exacerbation and lack of protective 
protein induction) (Shu et al., 2010). Additional protective 
mechanisms of Xe pre-C from ischemia/reperfusion injury, via 
mitochondrial K+-ATPase, were reported in immature rabbit 
heart (Li et al., 2013). Given the approval of TH for HIE in at-
term human infants and inclusion of TH as a standard of care 
in many countries, efficacy of Xe post-treatment combined 
with immediate or delayed TH was examined. The presence or 
lack of beneficial effects of Xe administered after injury was 
shown to strongly depend on the severity of HI, Xe dosing, the 
timing of administration, and coordination between TH and Xe 
administration after injury. We limit the discussion of Xe effects 
to pre-C and do not focus on post-treatment in this review. 

In cooled human newborns with neonatal encephalopathy, a 
small, single-arm, dose-escalation study showed the feasibility 
of using Xe in combination with TH (Dingley et al., 2014). 
No acute adverse respiratory, inflammatory or cardiovascular 
effects or adverse effects at 18 months' follow-up were 
observed (Dingley et al., 2014). Safety and feasibility of Xe 
was also confirmed in a recent TOBY-Xe trial.  This open-
label, randomized controlled trial compared effects of moderate 
whole-body cooling alone in moderately to severely injured 
36-43-week-old infants to effects of moderate hypothermia 
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combined with 30% Xe for 24 h (Azzopardi et al., 2016). At 
the same time, monitoring of multiple MRI/MRS markers 
showed lack of Xe-induced effects, suggesting that Xe is 
unlikely to enhance the neuroprotective effect of cooling after 
birth asphyxia (Azzopardi et al., 2016). While recent data in 
small and large newborn animal models and clinical trials 
have indicated safety and some neuroprotective potential 
of Xe, additional randomized clinical trials are necessary to 
corroborate these findings and confirm the feasibility of its 
routine use and its optimal timing, concentration, and duration 
for human neonatal HIE (Amer and Oorschot 2018). 

Other noble gases, argon and helium, were also shown to 
be beneficial as pre-C approaches in animal studies. When 
administered at the same rate as Xe, argon and helium improved 
cell survival, brain structural integrity, and neurologic function 
at P40 in a model of neonatal asphyxia in rats (Zhuang et al., 
2012). Argon reduced infarct volume following more severe 
HI injury (Zhuang et al., 2012). Protection was associated with 
increased expression of Bcl-2 and increased Bcl-xL and Bax 
expression as well (Zhuang et al., 2012). The safety of argon 
was established in newborn pigs under physiological conditions 
and following hypoxia (Alderliesten et al., 2014). 

Testing of the commonly used anesthetic isoflurane as a 
post-C approach in HI revealed that brief exposure carries 
beneficial potential and that neuroprotection was concentration- 
and time-dependent (Xu et al., 2016). Short-term and long-
term protection were partly mediated via the GluR2 AMPA 
receptor (Xu et al., 2016) and inhibition of the mitochondrial 
permeability transition pore following neonatal HI (Zhao et al., 
2014). Sevoflurane post-C also improved long-term learning 
and memory following HI. As with hypoxic pre-C, protection 
was mediated via the PI3K/Akt-mPTP pathway (Lai et al., 
2016). Dexmedetomidine post-C reduced brain injury after HI 
in neonatal rats as well (Ren et al., 2016). Taken together, the 
results show the central role of mitochondria in anesthetics-
induced pre-C protection.

Effects of pre-C and post-C on injury after neonatal focal 
arterial stroke
In adult stroke models, while restoration of CBF is protective 
after a short ischemic episode, it can be damaging following 
sustained perfusion deficits because of hyperemia in previously 
occluded regions and subsequent secondary hypoperfusion 
known as “no-reflow phenomenon” (Aronowski et al., 1997). 
The latter phenomenon has been attributed to leukocytes, and 
to neutrophils in particular. Ischemic post-C induced by serial 
short interruptions of CBF during early reperfusion either 
interrupted hyperemia (Zhao et al., 2006) or shortened its length 
(Wang et al., 2008) and reduced infarct volume, pointing to 
ischemic post-C as a neuroprotective strategy. Involvement of 
multiple mechanisms has been described, such as functional 
normalization of receptor and ion exchanger systems (Pignataro 
et al., 2011; Pignataro et al., 2011) and effects on inflammation 
(Joo et al., 2013). Effects of ischemic post-C on cell-cell 
interactions were also identified, such as neuronal VEGF 
regulation and microglial polarization (Esposito et al., 2018).

There is now ample evidence that the developmental stage 
of the brain at stroke onset plays a key role in injury (Ferriero, 
2004; Yager and Ashwal, 2009; Semple et al., 2013; Fernandez-
Lopez et al., 2014; Hagberg et al., 2015; Mallard and Vexler, 
2015), including distinctions in the neuroinflammatory 
mechanisms, and the role of microglial cells and BBB responses 
between perinatal and adult stroke (Denker et al., 2007; 
Faustino et al., 2011; Fernandez-Lopez et al., 2012; Fernandez-
Lopez et al., 2016). Compared to adult stroke models in which 
pre-C and post-C paradigms have been extensively studied, 
information on effectiveness and magnitude of conditioning-
induced protection following neonatal arterial stroke is scant, 

largely due to too few laboratories performing neonatal arterial 
focal stroke models.

In contrast to the presence of hyperemia in adult stroke 
models, induction of focal arterial stroke in P7 rats by 
electrocoagulation of left MCAO combined with concomitant 
transient occlusion of both common carotid arteries (CCA) did 
not lead to hyperemia early reperfusion, as was evident from 
CBF measurement by 2D-color-coded ultrasound imaging and 
laser Doppler flowmetry (Leger et al., 2012). Post-C induced 
by a series of re-occluding single or both CCA for various 
short time periods (up to 5 min) did not reduce infarct size 72 h 
after MCAO (Leger et al., 2012). In the same model in P7 rats, 
pre-C with NO inhalation was beneficial, as it induced NO in 
the brain, improved CBF and protected neonatal brain against 
stroke (Charriaut-Marlangue et al., 2012). In contrast, based on 
increased infarct size, post-C with NO inhalation exacerbated 
injury (Charriaut-Marlangue et al., 2012). Taken together, these 
data are consistent with the notion that the pattern of CBF 
changes upon reperfusion is a critically important mediating 
mechanism of post-C protection. The constraint of these data is 
the contribution of both local and systemic perfusion deficits. 
In a transient 3-h suture MCAO occlusion in P7 rats, using 
perfusion-sensitive contrast-enhanced MRI, we observed partial 
to complete reperfusion of previously occluded regions at a 
single acute time point, 30 min after suture retraction, as well as 
perfusion of injured regions 24 h after reperfusion (Fernandez-
Lopez et al., 2012). There was essentially no neutrophil 
infiltration 1-24 h after reperfusion and only a limited number 
of marginated neutrophils within previously occluded regions 
(Fernandez-Lopez et al., 2012). While post-C was not used 
in the latter study, the lack of neutrophil infiltration and only 
modest BBB leakage in neonatal tMCAO (Fernandez-Lopez 
et al., 2012; Fernandez-Lopez et al., 2016), as opposed to the 
presence of marked BBB disruption and apparent neutrophil 
margination that clog the vessels following tMCAO in adult 
brain, indirectly point to the importance of brain immaturity 
in the cerebrovascular responses that can affect efficacy of 
conditioning efforts in neonatal stroke. 

Summary: progress and limitations in the understanding of 
beneficial effects of pre-C and post-C in the immature brain
In this review we focused on experimental models of pre-C 
and post-C that are most commonly applied, models that utilize 
brief hypoxic or ischemic exposures, immune conditioning 
or conditioning with pharmacological agents such as EPO, 
magnesium or anesthetic agents. We also discussed mechanistic 
insights at the intracellular levels, with emphasis on common 
and distinct model-specific mechanisms. Yet, the magnitude 
of conditioning-induced benefits and specifics in the immature 
brain are far from being well understood. One important lesson 
learned from these studies is that because of the immaturity 
of the brain, information can’t be easily transferred from the 
adult field. While the general conceptual framework is similar 
regardless of age—the same intracellular mechanisms can be 
involved in pre-C and post-C and the time interval between 
insults is important in determining the pathological outcome—
the dynamic changes that occur in utero, in the early postnatal 
brain, and in immune system development create a delicate 
balance on the timing of sublethal exposure on the systemic, 
cell-to-cell and intracellular responses that can render the 
brain either more or less vulnerable to the severe insult. 
The field is evolving and other models of conditioning for 
the immature brain are being tested, namely hypobaric and 
hyperbaric hypoxia (Gamdzyk et al., 2016; Hentia et al., 2018), 
corticosteroids, resveratrol, and stem cells. Models where cells 
are conditioned prior to injection are also being developed 
(Sandvig et al., 2017). Overcoming some of the caveats should 
enhance our understanding. For example, the majority of rodent 
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pre-C studies were performed in P7 rats, a rodent age that is 
no longer thought to correspond to brain development of at-
term human infants, but rather to correspond to human brain 
at 32-36 gestation weeks (Semple et al., 2013). The HI injury 
manifests itself not in exactly the same ways in P7 and P10 
rodents (Patel et al., 2015). Thus, there is a gap in knowledge 
of conditioning effects at-term. Another caveat is insufficient 
understanding of whether conditioning mechanisms can be 
expected to be similarly efficacious after arterial stroke as they 
are after HI. Literature on sex differences in pre-C and post-C 
effects in immature brain is essentially non-existent. Moving 
forward, while understanding of pre-C is important, post-C 
might be a more valuable strategy given the unknowns of the 
timing of insult in newborn humans and, as we discussed, that 
interventions that are effective as pre-C might not be effective 
or may even be damaging in the immature brain. Finally, 
identification of biomarkers of conditioning efficacy could make 
a difference in translating the findings from animal studies to 
humans.
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