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Neuroprotection in Parkinson’s disease: Hypoxia Inducible 
Factor-1α, Exercise, and Preconditioning Through Hypoxia
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Exercise has been shown to be beneficial to neurological health. In fact, recent preclinical and clinical studies demonstrate 
that exercise, in particular vigorous aerobic exercise, is neuroprotective in Parkinson’s disease. One key protein activated by 
changes in cellular oxygen levels is Hypoxia Inducible Factor (HIF). HIF is a transcription factor that activates the expression 
of numerous genes, including those involved in glycolysis, angiogenesis, metabolism, and cell proliferation. In this review, 
we discuss exercise-induced neuroprotection and the necessity for the generation of hypoxia as a means to initiate 
neuroprotection within the dopaminergic neurons of the substantia nigra pars compacta. The role of HIF1α and its interacting 
partners (including the parkinsonian gene DJ-1) in the promotion of exercise-induced neuroprotection are also considered.

Keywords: hypoxia inducible factor; oxidative stress; dopaminergic neuron; substantia nigra

1Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107.

Correspondence should be addressed to Michelle Smeyne (michelle.smeyne@jefferson.edu).

Conditioning Medicine 2019 | Volume 2 | Issue 3 | June 2019

Introduction
Mammalian cells require both oxygen and a source of energy 
to survive. Cellular energy, provided in the form of adenosine 
triphosphate (ATP) is predominantly produced by the electron 
transport chain (ETC) in the inner mitochondrial membrane. The 
production of ATP involves oxygen, which generates a small 
amount of reactive oxygen species (ROS) (Murphy, 2009). In 
addition to energy production, cellular metabolism also depends 
on the regulation of oxygen and glucose for their homeostasis. 
In the brain, neurons are particularly sensitive to changes in 
these substrates. A decline in molecular oxygen levels results 
in cellular hypoxia. Hypoxia inducible factor (HIF) is a 
transcription factor that is sensitive to cellular oxygen levels, 
and activates the expression of numerous genes, some of which 
are involved in glycolysis, angiogenesis, metabolism, and cell 
proliferation (Wang and Semenza, 1993a; Semenza et al., 1994; 
Sharp and Bernaudin, 2004). HIF1α, as well as the products of 
many of these genes, has been implicated in preconditioning 
cells, as well as in the process of neuroprotection itself (Figure 
1).  In this review, we will discuss the role of HIF and exercise-
induced neuroprotection in experimental Parkinson’s disease. 

Exercise and Parkinson's disease
Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder, affecting 1-2% of adults over 

60 years of age (Tysnes and Storstein, 2017).  PD results in 
neuronal degeneration throughout the neuraxis, however the 
most notable cell loss is seen in the dopaminergic (DA) neurons 
of the substantia nigra pars compacta (SNpc) (Kalia and Lang, 
2015). The SNpc dopaminergic neurons are extremely sensitive 
to damage from oxidative stress, likely due to the fact that they 
contain high levels of iron and neuromelanin as well as free DA 
that, when not sequestered in vesicles, is readily nitrosylated 
(Gerlach et al., 2003; Sian-Hulsmann et al., 2011; Garcia-Garcia 
et al., 2012). The DA neurons of the SNpc project via the medial 
forebrain bundle to synapse primarily on D1 or D2-expressing 
medium spiny neurons (MSNs) in the striatum. Functionally, 
balanced output from this pathway is responsible for both the 
normal initiation and control of voluntary movement (Ledonne 
and Mercuri, 2017). When these SNpc DA neurons degenerate 
in PD, this system becomes unbalanced leading to its classical 
motor symptoms of tremor, bradykinesia, and rigidity (Kuno, 
1997). 

Exercise has been shown in epidemiological, preclinical, and 
human clinical studies to be beneficial to overall neurological 
health. In addition to Parkinson’s disease (Smith and Zigmond, 
2003; Chen et al., 2005; Xu et al., 2010; Yang et al., 2015; 
Muller and Myers, 2018), which will be the main focus of this 
paper, examples of the neuroprotective properties of exercise 
can be seen after stroke (Austin et al., 2014), in reducing the 
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risk of both vascular and Alzheimer’s dementia (Obisesan et 
al., 2012; Paillard et al., 2015), and in reducing the decline 
of function in multiple sclerosis (Motl and Sandroff, 2018), 
Huntington's Disease (Fritzet al., 2017) and Amyotropic Lateral 
Sclerosis (ALS)(McCrate and Kaspar, 2008).

Epidemiological studies have shown lower incidence of PD 
later in life for people who participated in moderate to vigorous 
physical activity (cycling, running, aerobic exercise, hockey, 
and basketball) at earlier stages in life (Sasco et al., 1992b; Chen 
et al., 2005; Thacker et al., 2008; Xu et al., 2010; Saaksjarvi 
et al., 2014; Yang et al., 2015; Shih et al., 2016; Muller and 
Myers, 2018). Recently, the positive impact of exercise on PD 
progression has been experimentally demonstrated. Shenkman 
et al. (2018) showed in a phase 2 randomized clinical trial of 
128 participants that patients who exercised at least 4 times/
week for 6 months and reached 85% maximum heart rate 
during their exercise period had a negligible progression in 
their UPDRS motor scores. In contrast, those individuals who 
performed exercise reaching only 65% maximum heart rate 
had a score increase of 2.0, and those who did not exercise 
or meet these parameters had a progression of 3.2, which 
was not significantly different from the 65% exercise group.  
Studies using forced lower extremity exercise by cycling have 
shown global improvement in PD patient symptoms (Ridgel 
et al., 2009; Rosenfeldt et al., 2015; Alberts et al., 2016; Shah 
et al., 2016). Forced exercise (FE) involves cycling at rates 
30% faster than voluntary exercise (VE), and both groups 
were compared to an inactive control group.  Functional MRI 
scans of patients in the FE and VE groups indicated improved 

thalamo-cortical connectivity in the FE group (Shah et al., 
2016). When a FE group that was not currently receiving PD 
medication was compared to a control group not receiving PD 
medication, the FE group had a 50% improvement in UPDRS 
scores (Alberts et al., 2016).  These studies and other trials of 
high-intensity exercise (Moore et al., 2013; Schenkman et al., 
2018) advocate high intensity or aerobic physical activity as 
a viable preventative measure and possible therapy for PD. 
Literature reviews and meta-analyses of published studies also 
support vigorous or aerobic physical activity to reduce the risk 
of PD, lessen the severity of PD symptoms, and also to improve 
cognitive function during the course of the disease (Lauze et al., 
2016; Flach et al., 2017; Ahlskog, 2018; da Silva et al., 2018; 
Ellis and Rochester, 2018; Fang et al., 2018). These studies also 
substantiate previous preclinical findings that demonstrated the 
neuroprotective effects of exercise (Hirsch and Farley, 2009; 
Zigmond et al., 2009; Radak et al., 2016).  One caveat to these 
studies is the possibility that a predisposition to PD promotes 
lower levels of physical activity (Chen et al., 2005; Thacker et 
al., 2008). Contrary to the above evidence, Logroscino et al. 
(2006) reported the absence of an association between physical 
activity and the risk of PD. Also, Sasco et al. (1992a) suggested 
moderate physical activity reduces the risk of PD while 
vigorous activity provides less benefit. 

The positive effect(s) of exercise on neurological health are 
likely due to the interactions of a multitude of factors. Exercise 
has been shown to increase the expression of neurotrophic 
factors (Cotman et al., 2007) including brain derived 
neurotrophic factor (BDNF) (Faherty et al., 2005; Wu et al., 

Figure 1. Role of HIFα in hypoxia.  Within the cell molecular oxygen is tightly regulated, and a key component of this oxygen-sensing 
pathway is the transcription factor hypoxia inducible factor (HIF). During periods of normoxia, HIF1α is continually made and degraded. The 
degradation of HIF1α requires interaction with prolyl hydroxylases (PHDs), which are activated by molecular oxygen and 2-oxoglutarate, an 
intermediate of the TCA cycle that also functions as a substrate for formation of ATP in the electron transport chain (ETC). When HIF1α is 
hydroxylated by PHDs it changes conformation so that it can be recognized by von  Hippel Lindau (VHL) factor. This complex interacts with 
the E3 ubiquitin ligase complex and is targeted for proteosomal degradation. Another means to prevent HIF-induced gene transcription is 
through the action of factor inhibiting hypoxia (FIH), which inhibits the formation of the HIF1α/HIF1β/p300/CBP complex. When cells are under 
oxygen stress they become hypoxic; a process where PHDs are inhibited and HIF1α accumulates. DJ-1 is a negative regulator of pVHL and also 
allows HIF1αaccumulation. Once HIF1α is stabilized and accumulates, it binds to HIF1β, complexes with p300 and CBP, and translocates to the 
nucleus where it binds to the Hypoxia Responsive Elements responsive elements (HRE’s) on DNA. (Adapted from Jochmanova et al., 2013).
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2011; Gerecke et al., 2012), vascular endothelial growth factor 
(VEGF) (Storkebaum et al., 2004; Yasuhara et al., 2004; Tang et 
al., 2009; Villar-Cheda et al., 2009; Munoz et al., 2018; Rezaei 
et al., 2018), glial cell line derived neurotrophic factor (GDNF) 
(Smith et al., 2003; Sajadi et al., 2006; Zigmond et al., 2009; 
Tajiri et al., 2010), and insulin-like growth factor (IGF) (Carro 
et al., 2000). Exercise has also been shown to induce anatomical 
and chemical neuroplasticity in the brain.  Fisher et al. (2004) 
showed that exercise after MPTP-induced parkinsonism can 
normalize changes in DA receptor expression, reduce levels of 
the DA transporter (DAT), and lead to behavioral improvement.  
In another study, treadmill exercise reduced the MPTP-induced 
loss of spines in striatal MSNs and increased the expression of 
two synaptic proteins, PSD-95 and synaptophysin (Toy et al., 
2014).  In a clinical study, eight weeks of treadmill exercise by 
PD patients resulted in increased striatal D2 receptor binding, 
measured by PET scan, as well as increased postural control; 
neither of which were seen in PD patients that did not exercise 
(Fisher et al., 2013). 

Exercise effects on cellular plasticity in the brain 
Interactions between living organisms and their environment 
often have a physical impact on that organism.  Some 
adaptations may be brought about indirectly, through activity 
that induces change in the biochemical signaling pathways 
of cells. Studies in mammals have demonstrated that the 
environment- and the animal's response to it- affects the brain. 
Enriched environments, that allow an animal’s exposure to 
social interaction, mazes, toys, and running wheels, have been 
shown to increase the capacity for memory or learning by 
increasing dendritic length (Faherty et al., 2003), dendritic spine 
density (Leggio et al., 2005), and induction of neurogenesis 
in the hippocampus (van Praag et al., 1999b; van Praag et al., 
1999a; Brown et al., 2003; Kronenberg et al., 2006). These 
changes are both brain region-specific and depend on the task 
performed. For example, rats executing acrobatic tasks such 
as training on an obstacle course have increased cerebellar 
molecular layer volume, increased Purkinje cell mitochondria 
number, and increased Purkinje cell synapse number (Black et 
al., 1990), while rats exercised on a treadmill (involuntary) or 
running wheel (voluntary) do not (Isaacs et al., 1992). However, 
rats in all active conditions show increased cerebellar capillary 
density compared to inactive animals (Isaacs et al., 1992).  
Similarly, young rats housed in a more complex environment 

(with toys and more social interaction), as well as rats in 
standard caging, (with other rats) have greater branching and 
surface area of capillaries in visual cortex than rats housed 
individually (Sirevaag et al., 1988).  Exercise has also been 
shown to affect neurotransmitter levels in the brain (Gerecke et 
al., 2010; Klempin et al., 2013; Waters et al., 2013), however 
see (Gorton et al., 2010). Therefore, physical activity has the 
potential to alter anatomical and chemical substrates in the 
brain.

A number of studies have examined biochemical and 
molecular changes in the brain that are induced by exercise. 
Kinni et al. (2011) showed that forced exercise resulted in 
increased cerebral metabolic parameters indicated by higher 
levels of glucose transporters 1 and 3 (GLUT 1 and 3), 
phosphorylated 5'-AMP-activated protein kinase (AMPK) 
activity, and HIF1α in cortex, that were significantly higher 
in rats exercised on a treadmill compared to voluntary wheel 
running or sedentary rats. In this study, voluntary runners ran 
a greater distance (4432 m) than those on a treadmill (90 m), 
which suggests that the intensity of the running effort, rather 
than distance alone may affect neuroprotection. 

Running exercise has also been shown to promote increases 
in VEGF (Ding et al., 2006a; Gao et al., 2014) and angiogenesis 
(Black et al., 1990; Isaacs et al., 1992; Ding et al., 2004). 
VEGF is protective in models of PD (Yasuhara et al., 2004; 
Yasuhara et al., 2005; Villar-Cheda et al., 2009) and an age 
dependent decrease in VEGF expression and microvascular 
density in rat SN is reversed with exercise (Villar-Cheda et al., 
2009). There are also indications of angiogenesis in PD patients 
(Faucheux et al., 1999; Desai Bradaric et al., 2012) suggesting 
a possible neurorestorative functional relationship between the 
vascular system and VEGF in PD. VEGF is a target gene of 
the transcription factor HIF (Liu et al., 1995; Forsythe et al., 
1996; Semenza, 2011b; Ahluwalia and Tarnawski, 2012), and in 
addition to the protective effects of VEGF on DA neurons, there 
are several other reasons to explore HIF as a modulator of DA 
neuron survival.

HIF as a modulator of SNpc DA neuron survival
HIF is a ubiquitous protein that is responsive to low oxygen 
levels in cells and is necessary for cell survival (Iyer et al., 
1998). Several lines of evidence support the involvement of 
HIF in the survival and maintenance of DA neurons in the SN. 
HIF1α improves the viability of midbrain or dopaminergic 
precursor cells, while reduction of HIF1α expression in vitro 
or in vivo reduces the number of tyrosine hydroxylase (TH) 
positive neurons (Milosevic et al., 2007; Kim et al., 2008; 
Johansen et al., 2010). Conditional knockout of HIF1α from 
midbrain neural precursor cells reduces VEGF expression, TH 
expression, and the number of TH+ neurons in young adult mice, 
while neuronal precursors in frontal cortex are not significantly 
affected (Milosevic et al., 2007). A number of studies have 
shown that the stabilization of HIF1α is protective to neurons 
(Siddiq et al., 2005; Siddiq et al., 2009; Lushnikova et al., 
2011). In particular, DA neurons are protected from MPTP 
toxicity (Lee et al., 2009) or 6-OHDA (Johansen et al., 2010) by 
inhibition of prolyl hydroxylases (PHDs), enzymes responsible 
for tagging HIF1α for proteosomal destruction (Mole et al., 
2001; Huang et al., 2002).  Inhibition of PHD allows the 
accumulation of HIF1α and the activation of downstream gene 
targets (Lee et al., 2009; Johansen et al., 2010). The expression 
of VEGF, shown to be a protective factor for DA neurons (Lee 
et al., 2009; Villar-Cheda et al., 2009) is regulated by HIF1α 
and HIF2α (Damert et al., 1997; Spinella et al., 2014). HIF2α is 
necessary for survival of DA neurons in the adult SNpc (Smeyne 
et al., 2015), for catecholamine homeostasis (Tian et al., 1998; 
Favier et al., 1999), as well as embryonic survival (Scortegagna 
et al., 2003). HIF2α is also stabilized with PHD inhibition under 

Figure 2. Exercise induces hypoxia in SNpc DA neurons. (A, B) 
C57BL/6 mice in the standard housing condition taken during the 
evening active period show DA neurons labeled with TH (A) but not 
Elk3-51, an indicator of hypoxic conditions in the cell (Bergeron et al., 
1999)(B). (C, D) SNpc from C57BL/6 mice in wheel cages taken during 
day 2 in the active period (running) show DA neurons co-labeled 
with TH (C) and Elk3-51 (D). Reprinted from Smeyne et al. (2015) with 
permission from Elsevier.
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control conditions as well as with administration of MPTP 
(Lee et al., 2009). Although HIF1α and HIF2α have distinct 
and sometimes contrasting functions (Yuan et al., 2013), they 
may serve as surrogates for one another, but that remains to be 
tested (Lee et al., 2009; Vasseur et al., 2009; Johansen et al., 
2010; Parsanejad et al., 2014; Smeyne et al., 2015). Complex 
I inhibitors such as rotenone and MPTP, which are known 
to be toxic to DA neurons (Giordano et al., 2012), attenuate 
HIF1α stabilization during hypoxia (Agani et al., 2000; Agani 
et al., 2002) while increasing cellular ROS (Przedborski and 
Ischiropoulos, 2005). Aerobic exercise that has been shown 
to be neuroprotective and may cause transient, intermittent 
hypoxia, stabilizes HIF1α (Lindholm and Rundqvist, 2016). 
In addition, PD patients have reduced HIF1α gene expression 
pathways in SN neurons isolated from postmortem brains 
(Elstner et al., 2011). 

HIFs are master regulators of (cellular) oxygen homeostasis 
and adaptive responses
HIF was first described as a DNA binding complex, sensitive 
to cellular hypoxia (Wang and Semenza, 1993b). HIF is a 
heterodimer composed of an oxygen sensitive alpha subunit 
(HIF1α, HIF2α, or HIF3α) and constitutively expressed HIF1β 
(also called the aryl hydrocarbon receptor nuclear translocator, 
ARNT) (Hu et al., 2003), which are part of the basic Helix-
Loop-Helix Per-Arnt-Sim (bHLH PAS) family of transcription 
factors (Wang et al., 1995). The bHLH domain modulates DNA 
binding and subunit dimerization (Jiang et al., 1996). Distinct 
genes encode HIF1α (hif1α), HIF2α (epas1), and HIF3α 
(hif3α), and while part of their amino acid sequences are highly 
conserved, their functions and tissue distributions are different 
(O'Rourke et al., 1999; Semenza, 2000; Hu et al., 2003). 
HIF1α is ubiquitously expressed and mediates transcription 
of genes whose protein products are involved in angiogenesis, 
vascular remodeling, energy metabolism including glycolysis, 
erythropoiesis, and cell proliferation and viability (Sharp and 
Bernaudin, 2004; Semenza, 2011b, a). HIF2α and HIF3α have 
a more discreet expression pattern, with HIF2α being found 
in vascular tissue, endothelial, and smooth muscle cells, as 
well as in liver, kidney, lung, pancreatic progenitor cells, and 
catecholaminergic producing tissues (Jain et al., 1998; Tian et 

al., 1998; Favier et al., 1999; Chen et al., 2010).  HIF2α plays 
a critical role in expression of genes encoding antioxidant 
enzymes (Scortegagna et al., 2003), factors that modulate 
vascular tone (Tian et al., 1997), and cardiac function (Tian et 
al., 1998; Sharp and Bernaudin, 2004). HIF3α is expressed at 
low levels in the cerebral cortex and hypothalamus (Heidbreder 
et al., 2000), as well as in the heart, lung, kidney (Makino et al., 
2002; Heidbreder et al., 2007; Pasanen et al., 2010), pancreas, 
skeletal muscle (Pasanen et al., 2010), and adipose tissue 
(Pfeiffer et al., 2016).

HIF1α and HIF2α (HIFα) possess an oxygen-dependent 
degradation domain (ODD) (Huang et al., 1998), an N-terminal 
transactivation domain (aa 531-575), and a C-terminal 
transactivation domain (aa 786-826) (Jiang et al., 1996; 
Semenza, 2000). Under normal oxygen conditions, HIFα is 
a short-lived protein, with a half-life of less than 5 minutes 
and a low steady state level (Huang et al., 1998) (room air is 
21% oxygen (160 mmHg), although oxygen levels in the brain 
are lower (1-5%) (Sharp and Bernaudin, 2004) and normal 
oxygenation of brain tissue occurs at ~pO2=35 mmHg (Carreau 
et al., 2011)). Under normoxic conditions, HIF1α and HIF2α are 
hydroxylated on 1 or 2 conserved proline residues (Pro402 and 
Pro564 in humans) within the ODD by PHDs (Tian et al., 2011; 
Snell et al., 2014). PHDs are dioxygenases that require O2, iron, 
and 2-oxoglutarate as cofactors (Epstein et al., 2001; Appelhoff 
et al., 2004; Berra et al., 2006). Hydroxylation of these residues 
changes the conformation of HIFα allowing the von Hippel 
Lindau protein (pVHL) to recognize and bind to it (Masoud and 
Li, 2015). Other factors bind to pVHL (elongin B and C, Cullin, 
and RBX1) (Kibel et al., 1995; Cockman et al., 2000; Sharp and 
Bernaudin, 2004) resulting in an E3 ubiquitin ligase complex, 
targeting HIF for ubiquitylation and proteasomal degradation 
(Maxwell et al., 1999; Sharp and Bernaudin, 2004; Samanta and 
Semenza, 2017) (Figure 1). HIFα protein is constantly produced 
but immediately degraded when sufficient oxygen is present, 
while the HIF1β subunit that is necessary for dimerizing with 
HIFα and translocating the HIF1α/β complex to the nucleus 
for DNA binding, is constitutively produced in normoxic and 
hypoxic conditions (Wang et al., 1995; Samanta and Semenza, 
2017). There are differing reports pertaining to changes in 
Hif1α RNA with changes in oxygen tension. In one report 
hypoxia (1% O2) results in increased levels of HIF1α RNA and 
protein (Wang et al., 1995) while in another HIF1α protein, but 
not RNA, is increased with exposure to reduced oxygen (1%) 
(Huang et al., 1996). Cellular hypoxia prevents O2 activation 
of PHD and degradation of HIFα, allowing stabilization and 
accumulation of HIFα and the induction of its target genes. 
A family of 3 PHD genes has been described: egln2 (encodes 
PHD1), egln1 (encodes PHD2), and egln3 (encodes PHD3) 
(Epstein et al., 2001).  Each of these have specificity for 
different hydroxylation sites of HIFα, and different expression 
levels and patterns (Appelhoff et al., 2004). PHD2 is able to 
hydroxylate both proline residues of HIF1α (human) (Huang et 
al., 2002; Berra et al., 2006) and has relatively more influence 
on the degradation of HIF1α than HIF2α (Appelhoff et al., 
2004). Factor Inhibiting HIF (FIH) also hydroxylates HIF1α in 
the presence of oxygen, preventing the HIF1α/β complex from 
binding to the coactivator p300 and CREB-binding protein 
(CBP), which bind to and activate HIF target genes (Kallio et 
al., 1998; Lee et al., 2004; Ruas et al., 2010) (Figure 1).

In addition to hypoxia, HIF1α is stabilized by the presence 
of ROS (Chandel et al., 2000; Brunelle et al., 2005). The 
mitochondrial ETC is composed of Complexes I through 
V, and inhibition at several different points has been shown 
to interfere with the stabilization of HIF1α during hypoxia. 
Pharmacological inhibitors of Complex I , MPP+ and rotenone 
(Agani et al., 2000; Agani et al., 2002), or genetic deletion of 
Complex I (DeHaan et al., 2004) block HIF1α stabilization. 

Figure 3. Exercise enhances HIF1α immunostaining in dopaminergic 
cells. (A-C): SNpc from WT mice housed under standard conditions. 
An arrow identifies a TH+ dopaminergic neuron (A, C, green). (D-F): 
SNpc from WT mice housed in wheel cages and allowed voluntary 
access to running for 3 months. Exercise does not alter the 
appearance of TH+ neurons in the SNpc (D, F) (arrows), but HIF1α (E) 
immunostaining is more evident in SNpc DA neurons (arrows). Each 
image is taken from a single 1 micrometer z-plane to insure that 
any co-localization of immunofluorescence is from the same cell. 
Reprinted from Smeyne et al. (2015) with permission from Elsevier.
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Mitochondrial DNA-depleted ro cells, which do not have a 
functional mitochondrial respiratory chain, do not increase 
ROS generation or stabilize HIF1α under hypoxic conditions 
(Chandel et al., 1998; Chandel et al., 2000). Further studies 
have demonstrated that the Qo site of Complex III is necessary 
for the generation of ROS and the stabilization of HIF1α during 
hypoxia (Bell et al., 2007). The addition of antioxidant enzymes 
to wild type or ro cells   decreases the stabilization of HIF1α 
during hypoxia (Chandel et al., 1998; Brunelle et al., 2005; 
Bell et al., 2007). The generation of ROS by the ETC during 
oxidative phosphorylation promotes HIF stabilization, however 
oxygen consumption or ATP production are not necessary for 
HIF accumulation. The addition of antioxidants reduces HIF 
accumulation, while hydrogen peroxide or free radical exposure 
promotes HIF stabilization (Brunelle et al., 2005). However, 
antioxidant administration does not affect HIF1α stabilization 
when mitochondrial respiration is inhibited. One possible 
explanation is that the inhibition of mitochondrial respiration 
may redistribute oxygen during hypoxic conditions, allowing 
the PHDs to function and reduce HIF1α stabilization (Hagen et 
al., 2003). Pharmacological inhibition of PHD by iron chelation 
or reduction of 2-oxoglutarate also promotes the stabilization of 
HIF during normoxic as well as hypoxic exposure (Lee et al., 
2009; Siddiq et al., 2009). The regulation of HIF1α stabilization 
is complex, and ultimately depends on the availability of O2 and 
the activity of PHDs.

Hypoxia induces changes in the brain through HIF
Hypoxia in the brain is of significant importance because 
the brain utilizes a disproportionate amount of oxygen and 
glucose relative to its size and to other organs (Raichle and 
Gusnard, 2002; Mergenthaler et al., 2013).  Further, neurons 
are particularly sensitive to changes in metabolism (Magistretti 
and Allaman, 2015). Oxygen pressure (pO2) is regulated by 
constriction or dilation of arterioles and by changes in capillary 
density (LaManna et al., 2004). Microvessel density has been 
shown to increase with hypoxia, by hypobaric control (LaManna 
et al., 2004; Benderro and Lamanna, 2011), induced ischemia 
(Pichiule et al., 2003), and by physical activity (Isaacs et al., 

1992; Swain et al., 2003). Conversely, increases in capillary 
density may be reversed by reoxygenation (Benderro and 
LaManna, 2014) or when hyperoxia occurs (Benderro et al., 
2012; Benderro and LaManna, 2013).  Increased expression and 
accumulation of the transcription factor HIF1α, and subsequent 
transcription of some of its target genes, including erythropoetin 
(EPO), VEGF, and Angiopoetin 2 (ANG2), are activated when 
oxygen levels are reduced in the brain (Chavez et al., 2000) but 
return to baseline with chronic hypoxia (14-21 days) (Chavez 
et al., 2000; LaManna et al., 2004) or reoxygenation (Chavez 
and LaManna, 2002; Benderro and LaManna, 2014). In aged 
rodent brain or under hyperoxic conditions dysregulation of 
HIF1α also occurs. For example, 24 month old C57BL/6 mice 
exhibit  HIF1α activation and accumulation that are attenuated 
and delayed, compared to young (4 month C57BL/6) mice 
(Ndubuizu et al., 2009; Ndubuizu et al., 2010; Benderro and 
Lamanna, 2011). This may be attributed to an increase in 
its degradation due to higher PHD protein in older animals 
(Ndubuizu et al., 2009). The reduction of HIF1α stabilization 
and accumulation that occurs with reoxygenation or chronic 
hypoxia does not occur under hyperoxic conditions (Benderro 
et al., 2012; Benderro and LaManna, 2013).

Preconditioning in the brain by hypoxia, oxidative stress 
and exercise-induced hypoxia 
Controlled hypoxia in the brain affords preconditioning, a 
protective mechanism where a sublethal exposure to hypoxia 
prevents neuronal death from a later, normally detrimental 
bout of ischemia (Liu et al., 1992; Perez-Pinzon et al., 1997; 
Bernaudin et al., 2002; Ratan et al., 2007).  Molecules activated 
by hypoxia have been demonstrated to be important for 
neuroprotection by ischemic preconditioning (Neumann et al., 
2015; Morris-Blanco et al., 2016; Koronowski et al., 2018). 
Pharmacological preconditioning has been shown to protect 
DA neurons from agents that induce oxidative stress (see Leak, 
2018, for review). In one study, dopaminergic cells treated 
with a sublethal concentration of 6-OHDA, used to produce 
lesions in the striatum, were later spared when administered 
a toxic dose of the same compound (Leak et al., 2006; Leak, 
2018). Several factors are necessary to provide this protective 
conditioning; mild oxidative stress (activation of the ARE by 
6-OHDA), increases in phosphorylated ERK1/2, AKT, JNK and 
Bcl2, and the ability to increase gene expression (Leak et al., 
2006).  

Exercise has been demonstrated to act as preconditioning 
protection from ischemic incidents through a number of factors 
(Ding et al., 2006b; Liebelt et al., 2010; Iadecola and Anrather, 
2011; Zhang et al., 2011; Dornbos et al., 2013; Rezaei et al., 
2018)(and reviewed in (Islam et al., 2017)). Increases in HIF1α, 
AMPK, and VEGF have been demonstrated with exercise and 
coincide with protection from post-exercise ischemic insults 
(Dornbos et al., 2013; Rezaei et al., 2018). 

Vigorous exercise provides preconditioning via HIF1α for 
DA neuron survival
Preclinical studies support the neuroprotective role of exercise 
on DA neurons in the SNpc and describe the type or intensity 
of the exercise (Gerecke et al., 2010) necessary to provide 
protection, as well as possible mechanisms or contributions 
to the effect (Gerecke et al., 2012). Voluntary wheel running 
protects the DA neurons of the SNpc in an acute MPTP mouse 
model of PD.  Administration of the mitochondrial complex 
I inhibitor, MPTP, leads to oxidative stress (Nicklas et al., 
1987; Sriram et al., 1997; Jackson-Lewis et al., 2015) and 
dopaminergic neuron death in the SNpc in some strains of mice 
(Sundstrom et al., 1987; Muthane et al., 1994; Hamre et al., 
1999; Sedelis et al., 2000). This neurotoxin is used to model 
parkinsonism since it was first discovered to rapidly produce 

Figure 4. Expression of hypoxia sensitive molecules in the SN is 
modulated by wheel running exercise. (A) hif1α expression from SN 
mRNA isolated at 1, 3, 5, 7, and 14 days of running show significant 
reduction at 3 days and increase at 5 days of running compared 
to controls in standard housing (SH). * = p ≤ 0.05, n = 17-18 for SH, 
5-8 for each exercise condition. (B) HIF1α protein from the SN is 
significantly increased at running day 3 and after 21 days of running 
plus MPTP administration (SN taken at 2 hrs. after the last MPTP 
injection). * = p ≤ 0.05. Error bars = ± SEM. Values are expressed as 
percent of control relative to SH after normalization to β-actin n = 
4 SN for each condition. Reprinted from Smeyne et al. (2015) with 
permission from Elsevier.
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symptoms such as rigidity, "pill-rolling" tremor, flexed posture, 
shuffling gait, bradykinesia, and hallucinations (Langston et 
al., 1983) in patients who had self-administered incorrectly 
synthesized heroin, which resulted in toxic MPTP. Brains 
from these patients at autopsy revealed ongoing (chronic) 
nigrostriatal damage years after the exposure to MPTP 
(Langston et al., 1999). Acute administration of MPTP (20 mg/
kg in 4 doses 2 hours apart) to C57BL/6 mice results in a 58%-
62% DA neuron loss in the SNpc, identified by cell counts of 
TH immunostained neurons (Jackson-Lewis et al., 1995; Hamre 
et al., 1999; Smeyne et al., 2015; Munoz-Manchado et al., 2016; 
Smeyne et al., 2016).  The amount of wheel running necessary 
to afford protection was further elucidated to be 3 months of 
voluntary running at 18,000 revolutions per night (9.2% cell 
loss), while mice allowed to run only 12,000 revolutions per 
night for 3 months (30.7% cell loss), or 18,000 revolutions for 
2 months (16.6% cell loss) were partially protected compared 
to mice in standard housing (SH). Mice allowed to run 6000 
revolutions/night (35.6% loss) or unrestricted running for 1 
month (41.5% cell loss) did not show a difference in cell loss 
compared to MPTP treated mice in SH conditions (Gerecke et 
al., 2010). The high threshold for voluntary running to protect 
SNpc DA neurons from the toxic insult may be comparable 
to the vigorous or forced exercise in human studies shown to 
reduce the risk of developing PD or improve motor symptoms 
once the disease has been diagnosed.

Preconditioning by hypoxia generated with exercise through 
HIF1α plays a role in the protection of SNpc DA neurons. In 
the MPTP toxin model of PD discussed above, where voluntary 
running is protective, it was hypothesized that the vigorous 
running necessary to provide DA neuron protection may involve 
HIF due to its role as a mediator of genes involved in cellular 
stress such as hypoxia, oxidative stress, and energy metabolism 
(Smeyne et al., 2015). In this paradigm, the inhibition of 
complex I and oxidative stress caused by administration of 
MPTP is the lethal insult that reduces DA neuron survival. 
Vigorous running is proposed as the means to produce a 
sublethal preconditioning insult, in the form of hypoxia and 
mild oxidative stress, which is later protective to the neurons. In 
fact, the DA neurons of the SNpc become hypoxic with intense 
running early in the exercise protocol (Smeyne et al., 2015) at 
2-3 days of running (Figure 2). In sedentary conditions, HIF1α 
is not expressed at detectable levels by immunofluorescence, 
but after 90 days of voluntary exercise, the protein expression 
is enhanced (Figure 3). In addition, HIF1α protein is increased 
in the SN at 3 days of running, while hif1α mRNA is reduced 
at 3 days and rebounds at 5 days after running begins (Figure 
4). HIF1α protein and RNA levels return to baseline at 7 days 
of running exercise, and remain at basal levels for 2-3 weeks. 
This is similar to the return to baseline of HIF1α with chronic 
hypoxia (Chavez et al., 2000). Administration of MPTP at 
3 weeks of voluntary running also results in an increase of 
HIFα protein. Reduction of Hif1α in postnatal DA neurons by 
conditional knockout abrogates the protective effect of running 
with MPTP administration, and in addition, vigorous running 
alone (>16,000 average daily revolutions) reduces the number 
of SNpc DA neurons  (Smeyne et al., 2015). It may be that the 
initial aerobic running and resulting hypoxia in neurons initiates 
a process where, with continued and regular running, there is a 
switch in metabolic pathways that is sustained and shields the 
neuron from later oxidative or toxic insult. 

DJ-1 regulates HIF1α stability and affects dopamine 
neurons 
Another point of regulation of HIF1α is DJ-1 (Figure 1), the 
product of the PARK7 gene, that functions as an antioxidant 
(Andres-Mateos et al., 2007; Cookson, 2012) and a regulator 
of pVHL (Parsanejad et al., 2014). PARK7 was shown to be 

important to DA neuron health when an increase in risk for 
the development of PD was linked to families with a PARK7 
mutation (Bonifati et al., 2003). DJ-1 is protective to SNpc DA 
neurons under oxidative stress conditions (Kim et al., 2005; Oh 
et al., 2018). Reduction of DJ-1 results in DA neuron loss with 
oxidative insult, while in normal conditions, it's decrease does 
not affect the number of SNpc DA neurons (Zhou and Freed, 
2005). 

DJ-1 expression is necessary for the phosphorylation of 
AKT and ensuing mTOR function that helps to stabilize HIF1α. 
Reduction of DJ-1 in tumor cells also reduces phosphorylation 
of AMPK, a metabolic sensor that responds to hypoxia and 
glucose deprivation (Vasseur et al., 2009). Knockdown of DJ-1 
in mouse embryonic fibroblasts (MEFs) reduces the amount of 
ATP, compared to wild-type MEFs, and the AMP:ATP ratio is 
also important for cell survival, especially under metabolically 
stressful conditions (Vasseur et al., 2009). SNpc neurons of DJ-
1(-/-) mutant mice are hypersensitive to MPTP administration, 
and in vitro DJ-1 deficient cortical neurons have increased 
sensitivity to oxidative stress, both of which can be reversed 
by expression of DJ-1 (Kim et al., 2005). Modulation of AKT 
activation by DJ-1 has also been shown to be important in 
the protection of SNpc DA neurons and striatal DA terminals 
with in vivo administration of MPTP (Aleyasin et al., 2010). 
DJ-1 also negatively regulates pVHL, leading to increased 
stabilization of HIF1α (Parsanejad et al., 2014). Loss of DJ-1 
reduces HIF1α levels in hypoxic or oxidative stress conditions, 
while accumulation of HIF1α rescues DJ-1 deficient DA 
neurons from MPTP toxicity (Parsanejad et al., 2014). DJ-1 
deficiency also promotes mitochondrial fragmentation in vitro 
and increased ROS production in mitochondria isolated from 
brain (Irrcher et al., 2010). The antioxidant N-acetylcysteine 
(NAC) as well as DJ-1 expression in DJ-1 -/- neurons rescues 
the mitochondria morphology defect, although mutant DJ-1 
expression, a C106A point mutation which is critical for DJ-1 
antioxidant effects (Canet-Aviles et al., 2004), does not rescue 
the defect. In addition, lymphoblasts from PD patients with a 
DJ-1 (Park7) mutation show diminished HIF1α stabilization 
in the presence of oxidative stress (Parsanejad et al., 2014) 
and fragmented mitochondria (Irrcher, 2010). Neuroprotection 
by exercise is not afforded to SNpc DA neurons in DJ-1KO 
mice. Three months of exercise that protects WT mice after 
administration of MPTP, does not spare DA neurons in the 
SNpc of DJ-1 KO mice even though the MPTP dose necessary 
to produce the lesion is lower (Smeyne, unpublished research). 

Conclusions
Numerous studies provide evidence that regular (vigorous) 
physical activity can reduce the risk of developing PD, as 
well as improve motor and cognitive function when used as 
therapy post-diagnosis. Regular physical activity is also a 
means to promote preconditioning in the brain; a phenomenon 
that has been shown to increase neuron survival in the event 
of later insult(s). Preconditioning afforded to neurons by 
pharmacological means and neuroprotection by preischemic 
sublethal hypoxia have been thoroughly demonstrated.  
Related to PD, DA neurons located in the SNpc benefit from 
vigorous aerobic exercise that generates hypoxia, inducing 
alterations in HIF1α-mediated gene expression and modifying 
neuronal metabolism. These alterations have been described 
in skeletal (White and Schenk, 2012; Kent and Fitzgerald, 
2016) and cardiac muscle (Zhou et al., 2006), but remain to 
be fully elucidated in neurons and glia.  The type and amount 
of physical activity necessary to promote metabolic change 
varies with the brain region, and it is possible that the threshold 
for preconditioning to acquire neuroprotection is unique for 
individuals depending on prior health, physical fitness, and 
genetic profile. Determining the molecular pathways and 
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the particular substrates that confer neuroprotection through 
exercise may make it possible to find and provide treatment 
for individuals who are not able to participate in physical 
activities.
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