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The role of peripherally derived monocytes in the 
aging injured brain

Susanna Rosi 1, 2, 3, 4, 5

Traumatic brain injury (TBI) is a primary cause of neurological disability worldwide. TBI affects 
the elderly population at a higher rate than any other group, resulting in a diminished quality 
of life post-injury. The effects of age on the pathophysiology of TBI currently is inadequately 
comprehended. We demonstrated that peripherally-derived monocytes (C-C chemokine receptor 
type 2 [CCR2+]) permeate the brain and exacerbate cognitive impairments chronically post-TBI. 
Notably, the age of the animals was demonstrated to directly increase infiltration of peripherally-
derived monocytes following TBI. Here we discuss the role of age on peripherally-derived 
monocytes’ (CD45hi; CCR2+) brain infiltration during the sub-acute stage of TBI and the effects 
of these monocytes on the progression of TBI-induced cognitive impairments. Following TBI, 
there was a surge of peripherally-derived monocytes into the aged brain in contrast to the young 
brain. In the aged brain, infiltration of peripherally-derived monocytes persisted sub-acutely after 
injury and was paralleled by an upregulation of CCR2 chemotactic ligands and a proliferation of 
CCR2+ monocytes. The myeloid cells present in the aged brain had diminished anti-inflammatory 
capacity versus the young brain. Notably, knockout of CCR2 was able to protect against TBI-
associated spatial memory impairment in aged animals. Overall, these results establish the vital 
role that peripherally-derived monocyte infiltration plays during the sub-acute period post-TBI in 
the aged brain. 
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Introduction
Traumatic brain injury (TBI) plays a key role in the 
development of neurological disabilities and is a major 
contributing factor in the onset of dementia and other 
neurodegenerative diseases (Johnson et al., 2010; Corrigan et 
al., 2010). An increase in the incidence of TBIs in the elderly 
population is extremely likely as a large portion of the world’s 
population begins to age (Stocchetti et al., 2012). TBI-related 
mortalities and hospitalizations are significantly increased for 
elderly patients, which is worrisome due to the diminished 
ability for endogenous cognitive repair and reduced quality of 
life post-TBI with age (Kameoka et al., 1984; Hukkelhoven 
et al., 2003; Schonberger et al., 2009). The difference in TBI 
incidence and outcome between older and younger populations 
also persists with mild TBIs (Susman et al., 2002). Efforts 
beyond acknowledging the role age plays in TBI outcomes 
are needed. Indeed, further investigations are required to 
elucidate how trauma affects elderly patients as the number 
of TBI incidents rise in the elderly population (Mushkudiani 
et al., 2007). Several studies have determined the reliability 
of rodent TBI models for studying the long-term effect of age 
on TBI (Itoh et al., 2008; Onyszchuk et al., 2008). Evidence 
has shown that aged mice subjected to TBIs have an increased 
level of neurodegeneration and diminished behavioral recovery 
versus young mice (Onyszchuk et al., 2008; Timaru-Kast et al., 
2012). Age-related increases in injury cavitation and neuronal 
cell death following TBI have been linked to an elevated 
inflammatory cytokine response two days post-TBI (Sandhir 
et al., 2004; Kumar et al., 2012; Timaru-Kast et al., 2012). An 
increase in inflammatory markers and an amoeboid morphology 
present several weeks post injury demonstrates simultaneous 
intensification of macrophage/microglia (myeloid cells) 
activation (Sandhir et al., 2008; Kumar et al., 2013; Morganti et 
al., 2016). 

Peripherally-derived monocytes invade the injured brain 
and differentiate into activated macrophages, which play a 
prominent role in inflammation and behavioral deficits post-
TBI in adult animals (Semple et al., 2010; Hsieh et al., 2014; 
MOrganti et al., 2015). Peripherally-derived monocytes are 
characterized by C-C chemokine receptor type 2 (CCR2) 
surface expression. Its ligand, C-C motif chemokine ligand 
2 (CCL2), epitomize the primary signaling pathway of 
peripherally derived monocyte infiltration (Prinz and Priller, 
2010). Following TBI, CCL2 increases in both rodent models 
and human patients (Semple et al., 2010; Shi and Pamer, 
2011; Liu et al., 2013). Inhibition of CCR2 reduces monocyte 
infiltration by 80-90%, weakens inflammatory cytokine 
expression, protects neuronal density, and prevents chronic 
learning deficits in young animals following TBI (Hsieh et al., 
2014; Gyoneva et al., 2015; Morganti et al., 2015). Our research 
demonstrated in aged brains, that monocyte infiltration within 
24 hours of the injury is sevenfold greater than in young brains. 
Therefore we hypothesized that peripherally-derived monocytes 
in the brain play a vital role in age-associated differences 
following TBI (Morganti et al., 2016). 

We recently showed that in aged brains there were increased 
levels of peripherally-derived monocytes following TBI for up 
to a week post-injury (Morganti et al., 2016). The increased rate 
of monocyte translocation in aged mice was maintained for 4 
days post-TBI. Aging also elevated the sub-acute expression 
of CCR2 ligands responsible for monocyte permeation into 
the injured brain. Importantly, there was a substantial increase 
in peripherally-derived monocytes in the bloodstream of aged 
animals post-TBI. Critically, we identified that age limits the 
anti-inflammatory response of myeloid cells during the injury-
driven inflammatory response. Hindering the infiltration of 
monocytes via CCR2 knockout in aged mice mitigates the 
progression of TBI-associated spatial memory impairments, 

indicating the importance of a healthy peripheral immune 
system in optimal TBI outcomes with aging.

Aging and Injured Brain: Role of Monocytes
Aging has been shown to create a surge in peripherally-derived 
monocytes into the injured brain and to modulate the sub-acute 
anti-inflammatory response leading to an increase in cognitive 
deficits following TBI. We elucidated an age-related surge in 
peripherally-derived monocytes into the injured brain as well as 
in the blood, which mirrored an increase in CCR2 chemotactic 
ligands. Interestingly, knockout of CCR2 diminished 
peripherally-derived monocyte infiltration and reduced spatial 
memory deficits post-TBI. 

The development of myeloid cells within the injured brain 
has been previously linked to aging, as demonstrated by the 
increase in the myeloid markers, ionized calcium adaptor 
molecule 1 (Iba-1) and CD11b (Sandhir et al., 2008). Of 
note, the investigators of the aforementioned study failed to 
differentiate between resident microglia and peripherally-
derived monocytes. However, the specific kinetics of monocyte 
translocation at sub-acute times post-TBI in the aged brain has 
subsequently been demonstrated for the first time. Indeed, it was 
shown that age-associated monocyte translocation remained 
through the subchronic stage.

Notably, an elevation of CCR2+ monocytes was also detected 
in the blood of aged animals post-TBI, which indicates that 
CCR2+ may serve as a potential biomarker for TBI patients. 
Currently, studies that examine biomarkers for TBI only analyze 
proteins that leave the brain and enter the blood, and they lack 
detailed comprehension of the role the proteins have on TBI 
outcomes (Kawata et al., 2016; Agoston et al., 2017). However, 
our lab and other investigators have shown peripherally-
derived monocytes to be critical to the development of post-
TBI deficits (Hsieh et al., 2014; Morganti et al., 2015). A recent 
study in human patients, spanning a variety of ages, revealed a 
significant elevation of monocytes in blood within the first 24 
hours post-TBI (Liao et al. 2013; Hazeldine et al., 2015). The 
results of the previous study may have been moderately affected 
by the wide range of patient ages (24 to 62 years old), as the 
data were not stratified according to age. This study cannot 
definitively determine acute surges of monocyte population 
growth and leakage into the bloodstream, however it may show 
that older patients have increased monocytes in their blood at 
the sub-acute stage rather than at acute time point. The collected 
data cannot exclude the possibility that various other blood 
lymphocytes may influence the results. Additional studies with 
a much broader scope are required to determine if peripheral 
monocyte levels and TBI patient outcomes are related in order 
to validate the use of blood monocytes as a biomarker for 
patient outcomes. 

Although the primary source of CCR2+ and CD45hi 

monocytes is bone marrow, alternative sites, for example 
the brain, contain endogenous macrophage populations and 
may offer a tolerant microenvironment for proliferation of 
peripherally-derived monocytes (Geissmann et al., 2010; Shi 
and Pamer, 2011). Importantly, peripherally-derived monocytes 
and endogenous macrophage populations have comparable 
function and markers, although they have markedly different 
origins (Alliot et al., 1999; Ginhoux et al., 2010). Following 
translocation, peripherally-derived monocytes reduce the 
expression of CCR2 and adopt a microglia-analogous form by 
upregulating the microglial marker CX3CR1 (Saederup et al., 
2010; Morganti et al., 2015). As a result, infiltrated monocytes 
may proliferate into BrdU-marked monocytes in the brain post-
TBI. Peripherally-derived monocytes have been demonstrated 
to proliferate in the peritoneum, an area with an endogenous 
macrophage population, during peritonitis (Davies et al., 
2013). Additional studies need to evaluate the ability of the 
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altered brain microenvironment to permit peripherally-derived 
monocytes to adopt the proliferative ability of microglia (Ajami 
et al., 2007; Yona et al., 2013). As several studies highlight the 
effects of age on microglia growth post-injury, age may also 
play a role in peripherally-derived monocytes (Sandhir et al., 
2008; Kumar et al., 2013; Loane and Kumar, 2016). 

We have previously demonstrated an elevation of the CCR2 
ligands CCL7, CCL8, and CCL12 24 hours post-TBI in the 
aged brain (Morganti et al., 2016). We recently determined 
that the age-related disparities of CCL8 and CCL12 remain 
at 4 and 7 days post-TBI (Chou et al., 2018). This elevation 
plays a possible role in the intensified monocyte translocation 
in the aged brain post-TBI. Although young and aged animals 
showed similar levels of CCL2 and CCL7 4 days post-TBI, 
in the young brains these levels were reduced by day 7 post-
TBI, whereas in the aged animals levels were still significantly 
elevated (Chou et al., 2018). In a prior study, we only monitored 
the F4/80hi monocyte population and determined that monocyte 
translocation ceased by 48 hours post-injury. However, when all 
F4/80+ subpopulations were included, we observed persistent 
monocyte translocation up to 4 days post-TBI in young 
animals. Additional studies are necessary to identify the precise 
moment monocyte infiltration occurs in both age groups in 
order to discern if monocyte infiltration is only magnified or if 
the window persists for a longer period. Further studies using 
immunohistochemistry could evaluate the regional presence 
of monocyte translocation into the aged brain. While the 
gating scheme used in our study selects most of the monocyte 
subpopulations, the data falls short of excluding all other cell 
types. Neutrophils, for example, also express CD45hi, CCR2, 
and CD11b, while possessing the ability to penetrate the injured 
brains of young animals (Jin et al., 2012; Hsieh et al., 2014). 
Although neutrophil penetration of the injured brain primarily 
occurs during the first 24 hours post-TBI, and subsides by day 3 
to 7, further studies should determine if the neutrophil response 
is comparable in aged animals. 

Prior studies have demonstrated that age boosts both anti- 
and pro-inflammatory responses in the first 24 hours post-
injury (Timaru-Kast et al., 2012; Kumar et al., 2013; Morganti 
eet al., 2016). Our data indicate that at 7 days post-TBI, the 
pro-inflammatory response is equivalent for aged and young 
animals, whereas the anti-inflammatory gene response is 
diminished in the myeloid cells of aged animals. Microglia/
macrophage polarization is evident by the presence of both pro- 
and anti-inflammatory phenotypes (Gordon, 2003; Kumar et 
al., 2016). Although it has been demonstrated that the myeloid 
population can exhibit both phenotypes concurrently post-TBI, 
the reduction in the anti-inflammatory markers, CD206 and 
Ym1, in aged animals indicates a less robust anti-inflammatory 
response following injury (Jablonski et al., 2015). Notably, the 
aged brain already prioritizes myeloid cells to pro-inflammatory 
gene expression, intensifying the effects of diminished anti-
inflammatory function (Lee et al., 2013). Additionally, the 
reduction in IL-4Ra and TGF-β, a receptor and cytokine, 
respectively, that encourage the anti-inflammatory phenotype, 
indicates an overall deficiency in anti-inflammatory polarization 
in contrast to dysfunction in a particular cytokine pathway 
(Gordon 2003; Gong et al., 2012). The age-spurred physiologic 
drive away from the anti-inflammatory myeloid phenotype 
likely contributes additional inflammation post-TBI, resulting 
in worse outcomes (Kumar et al., 2013; Morganti et al., 2015). 
In contrast, peripherally-derived monocytes have demonstrated 
anti-inflammatory properties post-stroke or spinal cord injury 
resulting in improved functional deficits (Shechter et al., 2009; 
Gleim et al., 2016; Wattananit et al., 2016). Although monocyte 
permeation of the brain worsens functional recovery post-
TBI, peripherally-derived monocytes have corresponded with 
increases in anti-inflammatory markers 7 days post-TBI in 

young mice (Semple et al., 2010; Hsieh et al., 2014; Gyoneva et 
al., 2015; Morganti et al., 2015). These data suggest that chronic 
deficits of anti-inflammatory properties in the aged animals 
may be due to diminished effectiveness of peripherally-derived 
monocytes. Rather than weakening the pro-inflammatory 
response, therapies that reestablish or supplement the anti-
inflammatory pathways of peripherally-derived monocytes may 
provide more robust results for treating TBI in the elderly. Our 
results also indicate these treatments may have a prolonged 
treatment window post-injury (Chou et al., 2018). 

The hinderance of CCR2+ monocyte permeation in young 
animals significantly lowers both anti- and pro-inflammatory 
responses and leads to overall cognitive improvements post-
TBI (Hsieh et al., 2014; Morganti et al., 2015). Inhibiting 
monocyte infiltration utilizing a CCR2 agonist leads to a 
diminished acute inflammatory response in aged animals, 
post-TBI (Morganti et al., 2016). In our study, we found that 
radial arm water maze (RAWM) scores were significantly 
affected by age for both sham and TBI animals, agreeing with 
published studies in which age has been the sole factor in 
reduced cognition (Rosenweig and Barnes, 2003; Villeda et 
al., 2014). The avoidance of monocyte infiltration via CCR2 
knockout improved TBI-related functional deficits for spatial 
memory in aged animals. However, RAWM scores reflected a 
persistent learning impairment on training days (Chou et al., 
2018). This experimental design primarily accounted for the 
effects of peripherally-derived monocytes and disregarded 
microglia/macrophages. Microglia activation post-injury has 
led to chronic inflammation and exacerbated cognitive deficits, 
comparable to peripherally-derived monocytes (Jin et al., 2012; 
Loane and Kumar, 2016). The effects of age on the microglial 
response post-injury has yet to be differentiated from the 
peripherally-derived monocytes effect, as the endogenous brain 
microglia population may correct for the lack of monocyte 
permeation in our study. It is vital to acknowledge a possible 
secondary injury cascade, which could negatively impact TBI 
outcomes in conjunction with monocyte infiltration in aged 
animals.

Conclusion
To conclude, altogether these studies significantly widen our 
comprehension of how age modulates the peripherally-derived 
monocytes response, in particular the TBI inflammatory 
response (Figure 1), and open new possibilities for targeted 
therapies for elderly TBI patients. Specifically, we emphasized 
the potential of peripherally-derived monocytes as an age-
specific biomarker and stressed the deficiencies of anti-
inflammatory pathways post-TBI for older cohorts. We are 
optimistic these results can expedite translational research to 
increase positive outcomes for the population at highest risk for 
TBI.

Figure 1: Schematic diagram of monocytes as a biomarker for TBI. 
Peripherally-derived monocytes may serve as a biomarker for TBI, 
which is exacerbated by aging. These monocytes may reflect the TBI-
aging effects on inflammation, and also the resulting inflammatory 
feedback response contributing to the pathology of TBI-aging 
condition.
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